Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Genome ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723289

RESUMO

Supernumerary chromosomes (B chromosomes) have been an intriguing subject of study. Our understanding of the molecular differentiation of B chromosomes from an interpopulation perspective remains limited, with most analyses involving chromosome banding and mapping of a few sequences. To gain insights into the molecular composition, origin, and evolution of B chromosomes, we conducted cytogenetic and next-generation sequencing analysis of the repeatome in the grasshopper Abracris flavolineata across various populations. Our results unveiled the presence of B chromosomes in two newly investigated populations and described new satellite DNA sequences. While we observed some degree of genetic connection among A. flavolineata populations, our comparative analysis of genomes with and without B chromosomes provided evidence of two new B chromosome variants. These variants exhibited distinct compositions of various repeat classes, including transposable elements and satellite DNAs. Based on shared repeats, their chromosomal location, and the C-positive heterochromatin content on the B chromosome, these variants likely share a common origin but have undergone distinct molecular differentiation processes, resulting in varying degrees of heterochromatinization. Our data serves as a detailed example of the dynamic and differentiated nature of B chromosome molecular content at the interpopulation level, even when they share a common origin.

2.
Chromosome Res ; 31(1): 5, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705735

RESUMO

Satellite DNAs (satDNAs) constitute one of the main components of eukaryote genomes and are involved in chromosomal organization and diversification. Although largely studied, little information was gathered about their evolution on holocentric species, i.e., diffuse centromeres, which, due to differences in repeat organization, could result in different evolutionary patterns. Here, we combined bioinformatics and cytogenetic approaches to evaluate the evolution of the satellitomes in Mahanarva holocentric insects. In two species, de novo identification revealed a high number of satDNAs, 110 and 113, with an extreme monomer length range of 18-4228 bp. The overall abundance of satDNAs was observed to be 6.67% in M. quadripunctata and 1.98% in M. spectabilis, with different abundances for the shared satDNAs. Chromosomal mapping of the most abundant repeats of M. quadripunctata and M. spectabilis on other Mahanarva reinforced the dynamic nature of satDNAs. Variable patterns of chromosomal distribution for the satDNAs were noticed, with the occurrence of clusters on distinct numbers of chromosomes and at different positions and the occurrence of scattered signals or nonclustered satDNAs. Altogether, our data demonstrated the high dynamism of satDNAs in Mahanarva with the involvement of this genomic fraction in chromosome diversification of the genus. The general characteristics and patterns of evolution of satDNAs are similar to those observed on monocentric chromosomes, suggesting that the differential organization of genome compartments observed on holocentric chromosomes compared with monocentric chromosomes does not have a large impact on the evolution of satDNAs. Analysis of the satellitomes of other holocentric species in a comparative manner will shed light on this issue.


Assuntos
Centrômero , DNA Satélite , Animais , DNA Satélite/genética , Mapeamento Cromossômico , Centrômero/genética , Genômica , Insetos/genética , Evolução Molecular
3.
Chromosoma ; 131(4): 253-267, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219241

RESUMO

Moths of the family Crambidae include a number of pests that cause economic losses to agricultural crops. Despite their economic importance, little is known about their genome architecture and chromosome evolution. Here, we characterized the chromosomes and repetitive DNA of the sugarcane borer Diatraea saccharalis using a combination of low-pass genome sequencing, bioinformatics, and cytogenetic methods, focusing on the sex chromosomes. Diploid chromosome numbers differed between the sexes, i.e., 2n = 33 in females and 2n = 34 in males. This difference was caused by the occurrence of a WZ1Z2 trivalent in female meiosis, indicating a multiple sex-chromosome system WZ1Z2/Z1Z1Z2Z2. A strong interstitial telomeric signal was observed on the W chromosome, indicating a fusion of the ancestral W chromosome with an autosome. Among repetitive DNAs, transposable elements (TEs) accounted for 39.18% (males) to 41.35% (females), while satDNAs accounted for only 0.214% (males) and 0.215% (females) of the genome. FISH mapping revealed different chromosomal organization of satDNAs, such as single localized clusters, spread repeats, and non-clustered repeats. Two TEs mapped by FISH were scattered. Although we found a slight enrichment of some satDNAs in the female genome, they were not differentially enriched on the W chromosome. However, we found enriched FISH signals for TEs on the W chromosome, suggesting their involvement in W chromosome degeneration and differentiation. These data shed light on karyotype and repetitive DNA dynamics due to multiple chromosome fusions in D. saccharalis, contribute to the understanding of genome structure in Lepidoptera and are important for future genomic studies.


Assuntos
Mariposas , Saccharum , Feminino , Masculino , Animais , Saccharum/genética , Evolução Molecular , Cromossomos Sexuais/genética , Cariótipo , Elementos de DNA Transponíveis , Mariposas/genética
4.
Chromosoma ; 130(4): 251-262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34837120

RESUMO

Satellite DNAs (satDNAs) and transposable elements (TEs) are among the main components of constitutive heterochromatin (c-heterochromatin) and are related to their functionality, dynamics, and evolution. A peculiar case regarding the quantity and distribution of c-heterochromatin is observed in the genus of bees, Melipona, with species having a low amount of heterochromatin and species with high amount occupying almost all chromosomes. By combining low-pass genome sequencing and chromosomal analysis, we characterized the satDNAs and TEs of Melipona quadrifasciata (low c-heterochromatin) and Melipona scutellaris (high low c-heterochromatin) to understand c-heterochromatin composition and evolution. We identified 15 satDNA families and 20 TEs for both species. Significant variations in the repeat landscapes were observed between the species. In M. quadrifasciata, the repetitive fraction corresponded to only 3.78% of the genome library studied, whereas in M. scutellaris, it represented 54.95%. Massive quantitative and qualitative changes contributed to the differential amplification of c-heterochromatin, mainly due to the amplification of exclusive repetitions in M. scutellaris, as the satDNA MscuSat01-195 and the TE LTR/Gypsy_1 that represent 38.20 and 14.4% of its genome, respectively. The amplification of these two repeats is evident at the chromosomal level, with observation of their occurrence on most c-heterochromatin. Moreover, we detected repeats shared between species, revealing that they experienced mainly quantitative variations and varied in the organization on chromosomes and evolutionary patterns. Together, our data allow the discussion of patterns of evolution of repetitive DNAs and c-heterochromatin that occurred in a short period of time, after separation of the Michmelia and Melipona subgenera.


Assuntos
Genômica , Heterocromatina , Animais , Abelhas/genética , Mapeamento Cromossômico , Elementos de DNA Transponíveis , DNA Satélite/genética , Evolução Molecular , Heterocromatina/genética
5.
J Evol Biol ; 34(9): 1466-1476, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331340

RESUMO

Ribosomal DNA (rDNA) loci are essential for cellular metabolism due to their participation in ribosome biogenesis. Although these genes have been widely cytogenetically mapped, the evolutionary mechanisms behind their variability in number and chromosomal location remain elusive, even in well-known biological groups, such as ants, bees and wasps (Insecta: Hymenoptera). To address this question in Hymenoptera and therefore advance the understanding of rDNA evolution in insects in general, we integrated molecular cytogenetic data, a phylogenomic framework, model-based predictions and genome sequencing. Hence, we assessed the main evolutionary trends shaping the chromosomal distribution of rDNA loci in Hymenoptera. We noticed the conservation of one site of rDNA per haploid genome, suggesting that a single 45S rDNA locus is the putative ancestral pattern for aculeate Hymenoptera. Moreover, our results highlighted a nonrandom distribution of rDNA in Hymenoptera karyotypes, as well as a lineage-specific preferential location. The proximal location of rDNA is favoured in species with multiple loci and in the two families of Hymenoptera that show the highest range of chromosome numbers: Formicidae and Vespidae. We propose that chromosome fissions have played a crucial role in the distribution pattern of rDNA loci through the evolutionary diversification of Hymenoptera. Moreover, our genomic analysis of two species, one with a single locus of rDNA and one with multiple loci, supported that loci multiplication is followed by sequence divergence. Our results provide detailed information about the number and chromosomal position of rDNA in Hymenoptera and, therefore, broaden our knowledge regarding rDNA evolutionary dynamics in insects.


Assuntos
Formigas , Vespas , Animais , Formigas/genética , Abelhas , DNA Ribossômico/genética , Cariótipo , Filogenia , Vespas/genética
6.
Heredity (Edinb) ; 127(5): 475-483, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482369

RESUMO

In addition to the normal set of standard (A) chromosomes, some eukaryote species harbor supernumerary (B) chromosomes. In most cases, B chromosomes show differential condensation with respect to A chromosomes and display dark C-bands of heterochromatin, and some of them are highly enriched in repetitive DNA. Here we perform a comprehensive NGS (next-generation sequencing) analysis of the repeatome in the grasshopper Abracris flavolineata aimed at uncovering the molecular composition and origin of its B chromosome. Our results have revealed that this B chromosome shows a DNA repeat content highly similar to the DNA repeat content observed for euchromatic (non-C-banded) regions of A chromosomes. Moreover, this B chromosome shows little enrichment for high-copy repeats, with only a few elements showing overabundance in B-carrying individuals compared to the 0B individuals. Consequently, the few satellite DNAs (satDNAs) mapping on the B chromosome were mostly restricted to its centromeric and telomeric regions, and they displayed much smaller bands than those observed on the A chromosomes. Our data support the intraspecific origin of the B chromosome from the longest autosome by misdivision, isochromosome formation, and additional restructuring, with accumulation of specific repeats in one or both B chromosome arms, yielding a submetacentric B. Finally, the absence of B-specific satDNAs, which are frequent in other species, along with its euchromatic nature, suggest that this B chromosome arose recently and might still be starting a heterochromatinization process. On this basis, it could be a good model to investigate the initial steps of B chromosome evolution.


Assuntos
Gafanhotos , Animais , Cromossomos de Insetos/genética , DNA , DNA Satélite/genética , Gafanhotos/genética , Heterocromatina/genética , Humanos
7.
Chromosome Res ; 28(3-4): 369-380, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32951078

RESUMO

Satellite DNAs (satDNA) are fast-evolving repetitive sequences organized in large tandem arrays, with characteristic enrichment in heterochromatin. Knowledge about evolutionary dynamics of this genome fraction is mostly restricted to its characterization in species with monocentric chromosomes, i.e., localized centromeres. In holocentric species, with non-localized centromeres, satDNAs have been largely ignored. Here we advance the understanding of satDNA evolution among holocentric species by characterization of the most abundant satDNAs in the hemipteran Holhymenia histrio, integrating genomic and chromosomal analyses. High plasticity at chromosomal and molecular levels was noticed for 34 satDNAs populating H. histrio genome. One satDNA family in particular (HhiSat01-184) was highly amplified on multiple chromosomes and also highly polymorphic. Our data support the emergence of a new satDNA family from this abundant satDNA, confined to a single chromosome. Moreover, we present new information about composition of a peculiar chromosome in Coreidae, the m-chromosome, and of the X chromosome. Overall, the molecular and chromosomal patterns for satDNAs in the holocentric species H. histrio seem to be similar to those observed in monocentric species.


Assuntos
Cromossomos de Insetos , DNA Satélite , Evolução Molecular , Genoma de Inseto , Genômica , Insetos/genética , Animais , Biologia Computacional/métodos , Genômica/métodos , Heterocromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente
8.
Chromosoma ; 128(2): 165-175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31111199

RESUMO

To better understand the structure and variability of the 45S rDNA cistron and its evolutionary dynamics in grasshoppers, we performed a detailed analysis combining classical and molecular cytogenetic data with whole-genome sequencing in Abracris flavolienata, which shows extraordinary variability in the chromosomal distribution for this element. We found astonishing variability in the number and size of rDNA clusters at intra- and inter-population levels. Interestingly, FISH using distinct parts of 45S rDNA cistron (18S rDNA, 28S rDNA, and ITS1) as probes revealed a distinct number of clusters, suggesting independent mobility and amplification of the 45S rDNA components. This hypothesis is consistent with the higher genomic coverage of almost the entire cistron of 45S rDNA observed in A. flavolineata compared to other grasshoppers, besides coverage variability along the 45S rDNA cistron in the species. In addition, these differences in coverage for distinct components of the 45S rDNA cistron indicate emergence of pseudogenes evidenced by existence of truncated sequences, demonstrating the rDNA dynamics in the species. Although the chromosomal distribution of 18S rDNA was highly variable, the chromosomes 1, 3, 6, and 9 harbored rDNA clusters in all individuals with the occurrence of NOR activity in pair 9, suggesting ancestry or selective pressures to prevent pseudogenization of rDNA sequences in this chromosome pair. Additionally, small NORs and cryptic rDNA loci were observed. Finally, there was no evidence of enrichment and association of transposable elements, at least, inside or nearby rDNA cistron. These findings broaden our knowledge of rDNA dynamics, revealing an independent movement and amplification of segments of 45S rDNA cistron, which in A. flavolineata could be attributed to ectopic recombination.


Assuntos
Cromossomos de Insetos/genética , DNA Ribossômico/genética , Gafanhotos/genética , RNA Ribossômico/genética , Animais , Genoma de Inseto , Masculino
9.
Heredity (Edinb) ; 125(3): 124-137, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32499661

RESUMO

A common characteristic of sex chromosomes is the accumulation of repetitive DNA, which accounts for their diversification and degeneration. In grasshoppers, the X0 sex-determining system in males is considered ancestral. However, in some species, derived variants like neo-XY in males evolved several times independently by Robertsonian translocation. This is the case of Ronderosia bergii, in which further large pericentromeric inversion in the neo-Y also took place, making this species particularly interesting for investigating sex chromosome evolution. Here, we characterized the satellite DNAs (satDNAs) and transposable elements (TEs) of the species to investigate the quantitative differences in repeat composition between male and female genomes putatively associated with sex chromosomes. We found a total of 53 satDNA families and 56 families of TEs. The satDNAs were 13.5% more abundant in males than in females, while TEs were just 1.02% more abundant in females. These results imply differential amplification of satDNAs on neo-Y chromosome and a minor role of TEs in sex chromosome differentiation. We showed highly differentiated neo-XY sex chromosomes owing to major amplification of satDNAs in neo-Y. Furthermore, chromosomal mapping of satDNAs suggests high turnover of neo-sex chromosomes in R. bergii at the intrapopulation level, caused by multiple paracentric inversions, amplifications, and transpositions. Finally, the species is an example of the action of repetitive DNAs in the generation of variability for sex chromosomes after the suppression of recombination, and helps understand sex chromosome evolution at the intrapopulation level.


Assuntos
DNA Satélite , Evolução Molecular , Gafanhotos , Cromossomos Sexuais , Animais , Feminino , Gafanhotos/genética , Masculino
10.
BMC Evol Biol ; 18(1): 2, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29329524

RESUMO

BACKGROUND: Neo-sex chromosome systems arose independently multiple times in evolution, presenting the remarkable characteristic of repetitive DNAs accumulation. Among grasshoppers, occurrence of neo-XY was repeatedly noticed in Melanoplinae. Here we analyzed the most abundant tandem repeats of R. bergii (2n = 22, neo-XY♂) using deep Illumina sequencing and graph-based clustering in order to address the neo-sex chromosomes evolution. RESULTS: The analyses revealed ten families of satDNAs comprising about ~1% of the male genome, which occupied mainly C-positive regions of autosomes. Regarding the sex chromosomes, satDNAs were recorded within centromeric or interstitial regions of the neo-X chromosome and four satDNAs occurred in the neo-Y, two of them being exclusive (Rber248 and Rber299). Using a combination of probes we uncovered five well-defined cytological variants for neo-Y, originated by multiple paracentric inversions and satDNA amplification, besides fragmented neo-Y. These neo-Y variants were distinct in frequency between embryos and adult males. CONCLUSIONS: The genomic data together with cytogenetic mapping enabled us to better understand the neo-sex chromosome dynamics in grasshoppers, reinforcing differentiation of neo-X and neo-Y and revealing the occurrence of multiple additional rearrangements involved in the neo-Y evolution of R. bergii. We discussed the possible causes that led to differences in frequency for the neo-Y variants between embryos and adults. Finally we hypothesize about the role of DNA satellites in R. bergii as well as putative historical events involved in the evolution of the R. bergii neo-XY.


Assuntos
DNA Satélite/genética , Evolução Molecular , Gafanhotos/genética , Análise de Sequência de DNA , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Hibridização in Situ Fluorescente , Masculino , Metáfase/genética
11.
Cytogenet Genome Res ; 151(1): 36-40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249262

RESUMO

In this study, we describe a strategy to determine the presence of B chromosomes in the living grasshopper Abracris flavolineata by FISH using U2 snDNA as a probe in interphase hemolymph nuclei. In individuals without B chromosomes, (0B) 2 dot signals were noticed, corresponding to A complement U2 snDNA clusters. In +1B and +2B individuals, 4 or 8 additional signals were noticed, respectively. In all cases, the absence or presence of 1 or 2 B chromosomes correlated in hemolymph and in somatic or germline tissues, validating the efficiency of the marker. Our data suggest that the B chromosome of A. flavolineata is present in all somatic tissues. B-carrying individuals showed the same number of B chromosomes in germ and somatic cells, suggesting that the B is mitotically stable. The marker was used to compare B chromosome frequency in the analyzed population with a sample collected previously, in order to test for B frequency changes and differences of B chromosome prevalence among sexes, but no statistically significant differences were noticed. The identification of living animals harboring B chromosomes will be very useful in future studies of B chromosome transmission, as well as in functional studies involving RNA analysis, thus contributing to the understanding of evolutionary history and the possible role of the B chromosome in A. flavolineata.


Assuntos
Cromossomos de Insetos/genética , Gafanhotos/genética , Hibridização in Situ Fluorescente/métodos , RNA Nuclear Pequeno/genética , Animais , Feminino , Hemolinfa/metabolismo , Interfase/genética , Masculino
12.
BMC Genet ; 18(1): 81, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851268

RESUMO

BACKGROUND: Satellite DNAs (satDNAs) are organized in repetitions directly contiguous to one another, forming long arrays and composing a large portion of eukaryote genomes. These sequences evolve according to the concerted evolution model, and homogenization of repeats is observed at the intragenomic level. Satellite DNAs are the primary component of heterochromatin, located primarily in centromeres and telomeres. Moreover, satDNA enrichment in specific chromosomes has been observed, such as in B chromosomes, that can provide clues about composition, origin and evolution of this chromosome. In this study, we isolated and characterized a satDNA in A and B chromosomes of Abracris flavolineata by integrating cytogenetic, molecular and genomics approaches at intra- and inter-population levels, with the aim to understand the evolution of satDNA and composition of B chromosomes. RESULTS: AflaSAT-1 satDNA was shared with other species and in A. flavolineata, was associated with another satDNA, AflaSAT-2. Chromosomal mapping revealed centromeric blocks variable in size in almost all chromosomes (except pair 11) of A complement for both satDNAs, whereas for B chromosome, only a small centromeric signal occurred. In distinct populations, variable number of AflaSAT-1 chromosomal sites correlated with variability in copy number. Instead of such variability, low sequence diversity was observed in A complement, but monomers from B chromosome were more variable, presenting also exclusive mutations. AflaSAT-1 was transcribed in five tissues of adults in distinct life cycle phases. CONCLUSIONS: The sharing of AflaSAT-1 with other species is consistent with the library hypothesis and indicates common origin in a common ancestor; however, AflaSAT-1 was highly amplified in the genome of A. flavolineata. At the population level, homogenization of repeats in distinct populations was documented, but dynamic expansion or elimination of repeats was also observed. Concerning the B chromosome, our data provided new information on the composition in A. flavolineata. Together with previous results, the sequences of heterochromatic nature were not likely highly amplified in the entire B chromosome. Finally, the constitutive transcriptional activity suggests a possible unknown functional role, which should be further investigated.


Assuntos
Cromossomos de Insetos , DNA Satélite , Gafanhotos/genética , Animais , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Evolução Molecular , Genômica , Hibridização in Situ Fluorescente , Transcrição Gênica
13.
Genome ; 59(8): 575-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27375029

RESUMO

B chromosomes have so far been described in about 80 species of Coleoptera, mainly using conventional staining analysis. In this study, 152 individuals of the dung beetle Dichotomius sericeus (Coleoptera), collected from three isolated geographical areas in the State of Pernambuco, Brazil, were analyzed to determine the frequency, prevalence, distribution, meiotic behavior, and possible B chromosome origin. The cytogenetic analysis consisted of conventional staining, C-banding, triple fluorochrome staining (CMA3/DA/DAPI), and fluorescent in situ hybridization using ribosomal DNAs (rDNAs) and H3 histone gene as probes, as well as microdissection and chromosome painting of the B chromosome. The B chromosomes were detected in all populations analyzed. Analysis revealed the heterochromatic nature and the presence of G+C-rich blocks and 18S rDNA on the B chromosome. FISH with DNA from microdissected B chromosome painted the entire extension of the B chromosome for all populations, besides the pericentromeric regions of all the autosomes, as well as the X chromosome. Finally, cross-hybridization in nine related species of Dichotomius using the microdissected B chromosome as probe did not reveal any hybridization signal. The results suggest an intraspecific and monophyletic origin for B chromosomes in D. sericeus, probably from the second or third autosomal pair.


Assuntos
Besouros/genética , Evolução Molecular , Animais , Bandeamento Cromossômico , Coloração Cromossômica , Cromossomos , DNA Ribossômico/genética , Genes de Insetos , Genes de RNAr , Genoma de Inseto , Heterocromatina/genética , Histonas/genética , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Microdissecção , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética
14.
Mol Genet Genomics ; 290(5): 1787-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25846962

RESUMO

B chromosomes are frequently enriched for a wide variety of repetitive DNAs. Among grasshoppers in the species Abracris flavolineata (Ommatolampidinae) the B chromosomes are submetacentric, C-negative and harbor repetitive DNAs such as, U2 snDNA, C 0 t-1 DNA, two Mariner-like elements and some microsatellites. Here, we provide evidence showing the intragenome similarity between the B chromosome and the A complement in A. flavolineata, combining analysis of microdissection and chromosome painting and B chromosome-specific amplification through polymerase chain reaction (PCR) of U2 snDNA. Chromosome painting revealed signals spread through the C-negative regions, including the A and B chromosomes. Moreover, significant clustered signals forming bands were observed in some A chromosomes, and for the B chromosome, significant signals were located on both arms, which could be caused by accumulation of repetitive DNA sequences. The C-positive regions did not reveal any signals. Sequence comparison of U2 snDNA between that obtained from a genome without the B chromosome and that from µB-DNA revealed high similarity with the occurrence of four shared haplotypes, one of them (i.e., Hap1) being highly prevalent and putatively ancestral. The highest divergence from Hap1 was observed for Hap3, which was caused by only six mutational steps. These data support an intraspecific origin of the B chromosome in A. flavolineata that is highly similar with the A complement, and the low U2 snDNA sequence diversity observed in the B chromosome could be related to its recent origin, besides intrachromosomal concerted evolution for U2 snDNA repeats in the B chromosome.


Assuntos
Cromossomos de Insetos , DNA/genética , Gafanhotos/genética , RNA Nuclear Pequeno/genética , Animais , Masculino , Dados de Sequência Molecular
15.
Gene ; 927: 148723, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914242

RESUMO

Satellite DNA (satDNA) consists of tandem repeat sequences that typically evolve rapidly through evolutionary mechanisms, including unequal crossover, transposition events, and others. The evolutionary history of Euchroma gigantea is marked by complex chromosomal evolution between lineages, making this species an interesting model for understanding satDNA evolution at intraspecies level. Therefore, our aim was to comprehend the potential contribution of satDNAs to the greater chromosomal differentiation of evolutionary lineages in E. gigantea by investigating the differential patterns of amplification and contraction of the repeats. To achieve this, we employed de novo identification of satDNA using RepeatExplorer and TAREAN, allowing the satellitome characterization between lineages. A total of 26 satDNA families were identified, ranging from 18 to 1101 nucleotides in length, with most families being shared between individuals/lineages, as predicted by the library hypothesis, except for the satDNA EgiSat21-168 that was absent for Northeast Lineage. The total satDNA content of the individuals was less than 11.2%, and it appeared to increase in two directions following the chromosomal evolution model. Thirteen satDNAs exhibited different patterns of amplification, and nine ones were contracted among individuals. Additionally, most repeats showed a divergence of about 10% for these satDNAs, indicating satellitome differentiation for each lineage/individual. This scenario suggests that the expansion of the satellitome occurred differentially among individuals/lineages of E. gigantea, with the contribution of various DNA turnover mechanisms after geographical isolation, and that they could be involved with karyotype evolution.

16.
Evolution ; 75(8): 2027-2041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155627

RESUMO

Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.


Assuntos
Evolução Molecular , Rearranjo Gênico , Gafanhotos , Animais , Genoma de Inseto , Gafanhotos/genética , Hibridização in Situ Fluorescente , Cariótipo , Família Multigênica
17.
Genome Biol Evol ; 12(3): 88-102, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32211863

RESUMO

Satellite DNA (satDNA) is an abundant class of tandemly repeated noncoding sequences, showing high rate of change in sequence, abundance, and physical location. However, the mechanisms promoting these changes are still controversial. The library model was put forward to explain the conservation of some satDNAs for long periods, predicting that related species share a common collection of satDNAs, which mostly experience quantitative changes. Here, we tested the library model by analyzing three satDNAs in ten species of Schistocerca grasshoppers. This group represents a valuable material because it diversified during the last 7.9 Myr across the American continent from the African desert locust (Schistocerca gregaria), and this thus illuminates the direction of evolutionary changes. By combining bioinformatic and cytogenetic, we tested whether these three satDNA families found in S. gregaria are also present in nine American species, and whether differential gains and/or losses have occurred in the lineages. We found that the three satDNAs are present in all species but display remarkable interspecies differences in their abundance and sequences while being highly consistent with genus phylogeny. The number of chromosomal loci where satDNA is present was also consistent with phylogeny for two satDNA families but not for the other. Our results suggest eminently chance events for satDNA evolution. Several evolutionary trends clearly imply either massive amplifications or contractions, thus closely fitting the library model prediction that changes are mostly quantitative. Finally, we found that satDNA amplifications or contractions may influence the evolution of monomer consensus sequences and by chance playing a major role in driftlike dynamics.


Assuntos
DNA Satélite/genética , Evolução Molecular , Gafanhotos/genética , Animais , Cromossomos de Insetos , DNA Satélite/química , Feminino , Heterocromatina , Cariótipo , Masculino , Análise de Sequência de DNA
18.
Genes (Basel) ; 9(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373193

RESUMO

Supernumerary (B) chromosomes are dispensable genomic elements occurring frequently among grasshoppers. Most B chromosomes are enriched with repetitive DNAs, including satellite DNAs (satDNAs) that could be implicated in their evolution. Although studied in some species, the specific ancestry of B chromosomes is difficult to ascertain and it was determined in only a few examples. Here we used bioinformatics and cytogenetics to characterize the composition and putative ancestry of B chromosomes in three grasshopper species, Rhammatocerus brasiliensis, Schistocerca rubiginosa, and Xyleus discoideus angulatus. Using the RepeatExplorer pipeline we searched for the most abundant satDNAs in Illumina sequenced reads, and then we generated probes used in fluorescent in situ hybridization (FISH) to determine chromosomal position. We used this information to infer ancestry and the events that likely occurred at the origin of B chromosomes. We found twelve, nine, and eighteen satDNA families in the genomes of R. brasiliensis, S. rubiginosa, and X. d. angulatus, respectively. Some satDNAs revealed clustered organization on A and B chromosomes varying in number of sites and position along chromosomes. We did not find specific satDNA occurring in the B chromosome. The satDNAs shared among A and B chromosomes support the idea of putative intraspecific ancestry from small autosomes in the three species, i.e., pair S11 in R. brasiliensis, pair S9 in S. rubiginosa, and pair S10 in X. d. angulatus. The possibility of involvement of other chromosomal pairs in B chromosome origin is also hypothesized. Finally, we discussed particular aspects in composition, origin, and evolution of the B chromosome for each species.

19.
PLoS One ; 9(5): e97956, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24871300

RESUMO

With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used fluorescent in situ hybridization (FISH) to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae), which harbors B chromosome. FISH revealed two main patterns: (i) exclusively scattered signals, and (ii) scattered and specific signals, forming evident blocks. The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C)30 was absent in heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the B chromosome more distinctive blocks for (GA)15 and (GAG)10. For A complement distinctive blocks were noticed for (A)30, (CA)15, (CG)15, (GA)15, (CAC)10, (CAA)10, (CGG)10, (GAA)10, (GAC)10 and (GATA)8. These results revealed an intense spreading of microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers including the B chromosomes.


Assuntos
Cromossomos/genética , Gafanhotos/genética , Repetições de Microssatélites/genética , Animais , Biotina , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA