Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Microsc Microanal ; 29(5): 1764-1773, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37639707

RESUMO

Olfaction is fundamental for sensing environmental chemicals and has obvious adaptive advantages. In fish, the peripheral olfactory organ is composed of lamellae in which the olfactory mucosa contains three main categories of olfactory sensory neurons (OSNs) as follows: ciliated (cOSNs), microvillous (mOSNs), and crypt cells. We studied the appearance of these different OSNs during development of Poecilia reticulata, given its growing use as animal model system. We performed immunohistochemical detection of molecular markers specific for the different OSNs, carrying out image analyses for marked-cell counting and measuring optical density. The P. reticulata olfactory organ did not show change in size during the first weeks of life. The proliferative activity increased at the onset of secondary sexual characters, remaining high until sexual maturity. Then, it decreased in both sexes, but with a recovery in females, probably in relation to their almost double body growth, compared to males. The density of both cOSNs and mOSNs remained constant throughout development, probably due to conserved functions already active in the fry, independently of the sex. The density of calretinin-positive crypt cells decreased progressively until sexual maturity, whereas the increased density of calretinin-negative crypt cell fraction, prevailing in later developmental stages, indicated their probable involvement in reproductive activities.


Assuntos
Neurônios Receptores Olfatórios , Poecilia , Animais , Feminino , Masculino , Calbindina 2 , Mucosa Olfatória
2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446129

RESUMO

In vertebrates, neurotrophins and their receptors play a fundamental role in the central and peripheral nervous systems. Several studies reported that each neurotrophin/receptor signalling pathway can perform various functions during axon development, neuronal growth, and plasticity. Previous investigations in some fish species have identified neurotrophins and their receptors in the spinal cord under physiological conditions and after injuries, highlighting their potential role during regeneration. In our study, for the first time, we used an excellent animal model, the zebrafish (Danio rerio), to compare the mRNA localization patterns of neurotrophins and receptors in the spinal cord. We quantified the levels of mRNA using qPCR, and identified the transcription pattern of each neurotrophin/receptor pathway via in situ hybridization. Our data show that ngf/trka are the most transcribed members in the adult zebrafish spinal cord.


Assuntos
Fatores de Crescimento Neural , Peixe-Zebra , Animais , Fatores de Crescimento Neural/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores de Fator de Crescimento Neural/genética , Medula Espinal/metabolismo , RNA Mensageiro/metabolismo , Receptor trkA/genética
3.
Microsc Microanal ; 28(1): 227-242, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177137

RESUMO

Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.


Assuntos
Mercúrio , Neurônios Receptores Olfatórios , Animais , Íons/metabolismo , Mercúrio/metabolismo , Mucosa Olfatória , Neurônios Receptores Olfatórios/metabolismo , Peixe-Zebra/fisiologia
4.
Proc Biol Sci ; 288(1957): 20211585, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403637

RESUMO

Doubly uniparental inheritance (DUI) represents a notable exception to the general rule of strict maternal inheritance (SMI) of mitochondria in metazoans. This system entails the coexistence of two mitochondrial lineages (F- and M-type) transmitted separately through oocytes and sperm, thence providing an unprecedented opportunity for the mitochondrial genome to evolve adaptively for male functions. In this study, we explored the impact of a sex-specific mitochondrial evolution upon gamete bioenergetics of DUI and SMI bivalve species, comparing the activity of key enzymes of glycolysis, fermentation, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation and antioxidant metabolism. Our findings suggest reorganized bioenergetic pathways in DUI gametes compared to SMI gametes. This generally results in a decreased enzymatic capacity in DUI sperm with respect to DUI oocytes, a limitation especially prominent at the terminus of the electron transport system. This bioenergetic remodelling fits a reproductive strategy that does not require high energy input and could potentially link with the preservation of the paternally transmitted mitochondrial genome in DUI species. Whether this phenotype may derive from positive or relaxed selection acting on DUI sperm is still uncertain.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Bivalves/genética , DNA Mitocondrial/genética , Feminino , Masculino , Mitocôndrias/genética , Fosforilação Oxidativa
5.
Histochem Cell Biol ; 156(1): 19-34, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33770286

RESUMO

The germline is a key feature of sexual animals and the ways in which it separates from the soma differ widely across Metazoa. However, at least at some point during germline differentiation, some cytoplasmic supramolecular structures (collectively called germ plasm-related structures) are present and involved in its specification and/or differentiation. The factors involved in the assembly of these granular structures are various and non-ubiquitous among animals, even if some functional patterns and the presence of certain domains appear to be shared among some. For instance, the LOTUS domain is shared by Oskar, the Holometabola germ plasm master regulator, and some Tudor-family proteins assessed as being involved in the proper assembly of germ granules of different animals. Here, we looked for the presence of LOTUS-containing proteins in the transcriptome of Ruditapes philippinarum (Bivalvia). Such species is of particular interest because it displays annual renewal of gonads, sided by the renewal of germline differentiation pathways. Moreover, previous works have identified in its early germ cells cytoplasmic granules containing germline determinants. We selected the orthologue of TDRD7 as a candidate involved in the early steps of germline differentiation through bioinformatic predictions and immunohistological patterning (immunohistochemistry and immunofluorescence). We observed the expression of the protein in putative precursors of germline cells, upstream to the germline marker Vasa. This, added to the fact that orthologues of this protein are involved in the assembly of germ granules in mouse, zebrafish, and fly, makes it a worthy study unit for investigations on the formation of such structures in bivalves.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Células Germinativas/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Bivalves , Diferenciação Celular , Células Germinativas/citologia , Ribonucleoproteínas/análise
6.
Proc Biol Sci ; 286(1896): 20182708, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963924

RESUMO

Mitochondria produce energy through oxidative phosphorylation (OXPHOS), which depends on the expression of both nuclear and mitochondrial DNA (mtDNA). In metazoans, a striking exception from strictly maternal inheritance of mitochondria is doubly uniparental inheritance (DUI). This unique system involves the maintenance of two highly divergent mtDNAs (F- and M-type, 8-40% of nucleotide divergence) associated with gametes, and occasionally coexisting in somatic tissues. To address whether metabolic differences underlie this condition, we characterized the OXPHOS activity of oocytes, spermatozoa, and gills of different species through respirometry. DUI species express different gender-linked mitochondrial phenotypes in gametes and partly in somatic tissues. The M-phenotype is specific to sperm and entails (i) low coupled/uncoupled respiration rates, (ii) a limitation by the phosphorylation system, and (iii) a null excess capacity of the final oxidases, supporting a strong control over the upstream complexes. To our knowledge, this is the first example of a phenotype resulting from direct selection on sperm mitochondria. This metabolic remodelling suggests an adaptive value of mtDNA variations and we propose that bearing sex-linked mitochondria could assure the energetic requirements of different gametes, potentially linking male-energetic adaptation, mitotype preservation and inheritance, as well as resistance to both heteroplasmy and ageing.


Assuntos
Bivalves/genética , Bivalves/metabolismo , DNA Mitocondrial/genética , Hereditariedade , Fosforilação Oxidativa , Animais , Feminino , Brânquias/metabolismo , Masculino , Oócitos/metabolismo , Espermatozoides/metabolismo
7.
Zygote ; 27(1): 25-35, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30523771

RESUMO

SummaryGerm plasm-related structures (GPRS) are known to accompany meiotic cell differentiation but their dynamics are still poorly understood. In this study, we analyzed the ultrastructural mechanisms of GPRS transformation during oogenesis and spermatogenesis of the bivalve mollusc Ruditapes philippinarum (Manila clam), exploring patterns of GPRS activity occurring at meiosis onset, sex-specific difference/similarity of such patterns, and the involvement of mitochondria during GPRS-assigned events. In the two sexes, the zygotene-pachytene stage of meiosis is anticipated by three shared steps. First, the dispersion of germ plasm granules containing the germ line determinant VASA occurs. Second, the VASA protein deriving from germ plasm granules enters neighbouring mitochondria and appears to induce mitochondrial matter release, as supported by cytochrome B localization outside the mitochondria. Third, intranuclear VASA entrance occurs and the protein appears involved in chromatin reorganization, as supported by VASA localization in synaptonemal complexes. In spermatogenesis, these three steps are sufficient for the normal course of meiosis. In oogenesis, these are followed by the action of 'germ plasm granule formation complex', a novel type of structure that appears alternative to the Balbiani body. The possibility of germ plasm involvement in reproductive technologies is also suggested.


Assuntos
Bivalves/citologia , Meiose , Mitocôndrias/fisiologia , Oócitos/citologia , Espermatozoides/citologia , Animais , Bivalves/fisiologia , Feminino , Masculino , Oócitos/fisiologia , Oogênese/fisiologia , Organelas , Ovário/citologia , Espermatogênese/fisiologia , Espermatozoides/fisiologia , Testículo/citologia
8.
Mol Biol Evol ; 34(8): 1960-1973, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444389

RESUMO

Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.


Assuntos
Bivalves/genética , Mitocôndrias/genética , Pequeno RNA não Traduzido/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Gônadas , Padrões de Herança/genética , Interferência de RNA/fisiologia , Pequeno RNA não Traduzido/fisiologia , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética
9.
Histochem Cell Biol ; 149(1): 105-110, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28875375

RESUMO

Reconstitution and renewal of tissues are key topics in developmental biology. In this brief work, we analyzed the wintry spent phase of the reproductive cycle in the Manila clam Ruditapes philippinarum (Bivalvia, Veneridae) in order to study the gonad rebuilding that in this species occurs at the beginning of the warmer months. We labeled VASA homolog protein-a germ cell marker-and compared the histological observations of the spent phase with those of the previously analyzed gametogenic phase. In R. philippinarum, during the reproductive season, most of the body mass is represented by sack-like structures (acini) full of developing gametes. In that period, VASA-stained cells are present at the basal pole of the gut epithelium, in the connective tissue, and around the acini. We here show that during the spent phase large portions of the intestine lack such cell type, except for some areas showing a few faintly VASA-stained cells. Cells with similar nuclear morphology are present among loosely organized cells of connective tissue, sometimes as single units, sometimes in small groups, rarely partially organized in primordial gonadic structures. These observations match the findings of RNA-targeting studies that during the spent phase identified the source of bivalve germ cells within the connective tissue in the form of quiescent units and add new information on the possible maintenance of VASA-stained, multipotent cells among the batiprismatic cells of the intestine during the whole life span of these bivalves.


Assuntos
Relógios Biológicos , Células Germinativas/citologia , Gônadas/citologia , Estações do Ano , Comportamento Sexual Animal , Animais , Bivalves , Linhagem Celular
10.
J Exp Zool B Mol Dev Evol ; 330(1): 41-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29393570

RESUMO

The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across the whole animal kingdom. However, some interesting exceptions are known for the class Bivalvia, in which several species show an unusual pattern called doubly uniparental inheritance (DUI) whose outcome is a heteroplasmic pool of mtDNA in males. Even if DUI has been studied for long, its molecular basis has not been established yet. The aim of this work is to select classes of proteins known to be involved in the maintenance of SMI and to compare their features in two clam species differing for their mitochondrial inheritance mechanism, that is, the SMI species Ruditapes decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the transcriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in autophagy and mitophagy. For each protein group of interest, transcription bias (male or female), annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evidence supporting a role of nucleases/polymerases or autophagic machinery in the enforcement of SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have been retrieved, providing us with two alternative testable models for mitochondrial inheritance mechanisms at the molecular level.


Assuntos
Bivalves/genética , Mitocôndrias/genética , Ubiquitina-Proteína Ligases/genética , Animais , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
11.
Trends Genet ; 30(12): 555-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263762

RESUMO

Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Proteínas Mitocondriais/genética , Animais , Feminino , Humanos , Padrões de Herança , Masculino , Proteínas Mitocondriais/metabolismo , Modelos Genéticos
12.
Histochem Cell Biol ; 148(2): 157-171, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28386635

RESUMO

Germ line segregation can occur during embryogenesis or after embryogenesis completion, with multipotent cells able to give rise to both germ and somatic cells in the developing juvenile or even in adulthood. These undifferentiated cells, in some animals, are self-renewing stem cells. In all these cell lineages, the same set of genes, among which vasa, appears to be expressed. We traced VASA expression during the peculiar gonad rebuilding of bivalves to verify its presence from undifferentiated germ cells to mature gametes in an animal taxon in which the mechanism of germ line establishment is still under investigation. We utilized antibodies produced against VASPH, VASA homolog of Ruditapes philippinarum (Subclass Heterodonta), to compare the known expression pattern of R. philippinarum to two species of the Subclass Pteriomorphia, Anadara kagoshimensis and Crassostrea gigas, and another species of the Subclass Heterodonta, Mya arenaria. The immunohistological data obtained support a conserved mechanism of proliferation of "primordial stem cells" among the simple columnar epithelium of the gut, as well as in the connective tissue, contributing to the seasonal gonad reconstitution. Given the taxonomic separation of the analyzed species, we suggest that the process could be shared in bivalve molluscs. The presence of germ cell precursors in the gut epithelium appears to be a feature in common with model organisms, such as mouse, fruit fly, and human. Thus, the comparative study of germ line establishment can add details on bivalve development, but can also help to clarify the role that VASA plays during germ cell specification.


Assuntos
Bivalves/metabolismo , RNA Helicases DEAD-box/genética , Células Germinativas/metabolismo , Sequência de Aminoácidos , Animais , Bivalves/citologia , RNA Helicases DEAD-box/metabolismo , Células Germinativas/citologia , Alinhamento de Sequência
13.
J Exp Zool B Mol Dev Evol ; 328(5): 433-448, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28656658

RESUMO

Among genes involved in the regulation of germ cell differentiation, those of DDX4/Vasa and the Ded1/DDX3 subfamilies encode for DEAD-box ATP-dependent RNA helicases, proteins involved in many mechanisms related to RNA processing. For the first time in reptiles, using specific antibodies at confocal microscopy, we analysed the localization pattern of a Ded1/DDX3 subfamily member in testis and ovary of Podarcis sicula (Ps-PL10) during the reproductive cycle. In testis, Ps-PL10 is expressed in the cytoplasm of spermatocytes and it is not detected in spermatogonia. Differently from Ps-VASA, in round spermatids, Ps-PL10 is not segregated in the chromatoid body but it accumulates in the cytoplasm of residual bodies, and mature spermatozoa are unstained. These observations suggest that in males, Ps-PL10 (1) is involved in spermatogenesis and (2) is then eliminated with residual bodies. In the ovary, Ps-PL10 is present with granules in the cytoplasm of early meiotic cells of the germinal bed (GB), while it is not present in oogonia and somatic cells of the GB stroma. In follicular cells of ovarian follicles, Ps-PL10 expression starts after their fusion with the oocyte. Numerous Ps-PL10 spots are visible in pyriform (nurse-like) cells concomitantly with the protein accumulation in the cytoplasm of differentiating oocyte. In pyriform cells, Ps-PL10 spots are present in the cytoplasm and nuclei, as observed for Ps-VASA, and in the nucleoli, suggesting for Ps-PL10 a role in rRNA processing and in the transport of molecules from the nucleus to cytoplasm and from nurse cells to the oocyte.


Assuntos
Diferenciação Celular/fisiologia , RNA Helicases DEAD-box/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Células Germinativas/fisiologia , Lagartos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos , Especificidade de Anticorpos , RNA Helicases DEAD-box/genética , Feminino , Lagartos/genética , Masculino , Microscopia Confocal , Filogenia
14.
J Exp Zool B Mol Dev Evol ; 324(5): 424-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25944282

RESUMO

The vasa gene encodes a DEAD-box ATP-dependent RNA helicase that regulates the translation of multiple mRNAs involved in germ line differentiation. This protein has been deeply studied in many animals, but few data are available to date on reptiles. In this work, we sequenced a portion of Podarcis sicula vasa gene (Ps-vasa), developed a specific antibody and verified its specificity. Using anti-Ps-Vasa and confocal microscopy, we studied Vasa expression in male germ cells during the reproductive cycle of P. sicula: during full gonadal activity (spring), during regression of gonadal activity (summer) and during slow autumnal recrudescence. We also analyzed Vasa expression in young testes when the walls of the seminiferous tubules were forming. The aim was to verify if Vasa is involved in the process of male germ cell differentiation in all phases of the reproductive cycle. In adult testes, during full gonadal activity and during recrudescence, Vasa staining was detected from spermatogonia to spermatids. Vasa spots were also observed in the nucleus of germ cells supporting its function in different cellular compartments. No Vasa staining was observed in mature spermatozoa during the spring and mid-late November. The seminiferous epithelium analyzed in the summer appeared reduced with only spermatogonia, all Vasa-immunostained, some in division to replace germ cells. In immature testes, the seminiferous epithelium contained only spermatogonia and spermatocytes. The clear immunostaining in their cytoplasm revealed that Vasa is already expressed in juvenile male gonads, suggesting a role in the differentiation process since P. sicula early developmental stages.


Assuntos
RNA Helicases DEAD-box/genética , Lagartos/genética , Ovário/metabolismo , Reprodução/genética , Testículo/metabolismo , Sequência de Aminoácidos , Animais , RNA Helicases DEAD-box/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Dados de Sequência Molecular , Oogênese/genética , Ovário/citologia , Reprodução/fisiologia , Estações do Ano , Espermatogênese/genética , Testículo/citologia
15.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26490419

RESUMO

Which mitochondria are inherited across generations? Are transmitted mitochondria functionally silenced to preserve the integrity of their genetic information, or rather are those mitochondria with the highest levels of function (as indicated by membrane potential Δψm) preferentially transmitted? Based on observations of the unusual system of doubly uniparental inheritance of mitochondria and of the common strictly maternal inheritance mode, I formulate a general hypothesis to explain which mitochondria reach the primordial germ cells (PGCs), and how this happens. Several studies indicate that mitochondrial movements are driven by microtubules and that mitochondria with high Δψm are preferentially transported. This can be applied also to the mitochondria that eventually populate embryonic PGCs, so I propose that Δψm may be a trait that allows for the preferential transmission of the most active (and healthy) mitochondria. The topics discussed here are fundamental in cell biology and genetics but remain controversial and a subject of heated debate; I propose an explanation for how a Δψm-dependent mechanism can cause the observed differences in mitochondrial transmission.


Assuntos
Células Germinativas Embrionárias/fisiologia , Padrões de Herança , Potencial da Membrana Mitocondrial , Mitocôndrias/fisiologia , Animais , Transporte Biológico , Células Germinativas Embrionárias/ultraestrutura , Feminino , Masculino , Mitocôndrias/genética , Oócitos/fisiologia , Oócitos/ultraestrutura , Espermatozoides/fisiologia , Espermatozoides/ultraestrutura
16.
Curr Genet ; 60(3): 163-73, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24562864

RESUMO

In species with doubly uniparental inheritance (DUI), males are heteroplasmic for two sex-linked mitochondrial genomes (M- and F-mtDNA). While a role of M-mtDNA in male gametogenesis and sperm function is evident, there is an ongoing debate on whether it is transcribed or not in male soma. In this work we report a qPCR analysis in the DUI species Ruditapes philippinarum, showing that M-mtDNA is transcribed in somatic tissues. We observed a correlation between DNA copy numbers of the two analyzed genes, cytochrome b and a novel male-specific mitochondrial gene thought to be involved in DUI (orf21), and between their transcription levels. No correlation between a transcript and its DNA copy number was found, supporting the existence of complex regulatory mechanisms of mitochondrial transcription. We found the highest amount of mtDNA and mtRNA in gonads, likely due to the intense cell proliferation and high energy request for gametogenesis, while the observed variation among specimens is probably related to their different stages of gonad development. Finally, orf21 showed a highly variable transcription in advanced stages of gametogenesis. We hypothesize a differential storage of orf21 transcripts in spermatozoa, representing different paternal contributions to progeny, possibly leading to different developmental outcomes. A transcriptional activity does not necessarily imply the translation of M-mtDNA genes, and studies on mitochondrial proteins and their localization are needed to definitively assess the functioning of male-transmitted mitochondria in male soma. All that considered, the male soma of DUI species may represent an intriguing experimental model to study cytoplasmic genetic conflicts.


Assuntos
Bivalves/genética , Genoma Mitocondrial , Padrões de Herança , Transcrição Gênica , Animais , Análise por Conglomerados , DNA Mitocondrial , Dosagem de Genes , Perfilação da Expressão Gênica , Genes Mitocondriais , Masculino
17.
Mol Biol Evol ; 29(2): 771-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21976711

RESUMO

Males and females share the same genome, thus, phenotypic divergence requires differential gene expression and sex-specific regulation. Accordingly, the analysis of expression patterns is pivotal to the understanding of sex determination mechanisms. Many bivalves are stable gonochoric species, but the mechanism of gonad sexualization and the genes involved are still unknown. Moreover, during the period of sexual rest, a gonad is not present and sex cannot be determined. A mechanism associated with germ line differentiation in some bivalves, including the Manila clam Ruditapes philippinarum, is the doubly uniparental inheritance (DUI) of mitochondria, a variation of strict maternal inheritance. Two mitochondrial lineages are present, one transmitted through eggs and the other through sperm, as well as a mother-dependent sex bias of the progeny. We produced a de novo annotation of 17,186 transcripts from R. philippinarum and compared the transcriptomes of males and females and identified 1,575 genes with strong sex-specific expression and 166 sex-specific single nucleotide polymorphisms, obtaining preliminary information about genes that could be involved in sex determination. Then we compared the transcriptomes between a family producing predominantly females and a family producing predominantly males to identify candidate genes involved in regulation of sex-specific aspects of DUI system, finding a relationship between sex bias and differential expression of several ubiquitination genes. In mammalian embryos, sperm mitochondria are degraded by ubiquitination. A modification of this mechanism is hypothesized to be responsible for the retention of sperm mitochondria in male embryos of DUI species. Ubiquitination can additionally regulate gene expression, playing a role in sex determination of several animals. These data enable us to develop a model that incorporates both the DUI literature and our new findings.


Assuntos
Bivalves/genética , DNA Mitocondrial/genética , Regulação da Expressão Gênica no Desenvolvimento , Padrões de Herança , Processos de Determinação Sexual/genética , Animais , Feminino , Gônadas/citologia , Masculino , Mitocôndrias/genética , Mitocôndrias/fisiologia , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores Sexuais , Frutos do Mar , Transcriptoma/genética , Ubiquitinação
18.
J Exp Zool B Mol Dev Evol ; 320(7): 442-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23873694

RESUMO

Mitochondria are inherited maternally in most metazoans, but in bivalves with Doubly Uniparental Inheritance (DUI) a mitochondrial lineage is transmitted through eggs (F-type), and another through sperm (M-type). In DUI species, a sex-ratio distortion of the progeny was observed: some females produce a female-biased offspring (female-biased family), others a male-biased progeny (male-biased family), and others a 50:50 sex-ratio. A peculiar segregation pattern of M-type mitochondria in DUI organisms appears to be correlated with the sex bias of these families. According to a proposed model for the inheritance of M-type mitochondria in DUI, the transmission of sperm mitochondria is controlled by three nuclear genes, named W, X, and Z. An additional S gene with different dosage effect would be involved in sex determination. In this study, we analyzed structure and localization of three transcripts (psa, birc, and anubl1) with specific sex and family biases in the Manila clam Ruditapes philippinarum. In situ hybridization confirmed the localization of these transcripts in gametogenic cells. In other animals, homologs of these genes are involved in reproduction and ubiquitination. We hypothesized that these genes may have a role in sex determination and could also be responsible for the maintenance/degradation of spermatozoon mitochondria during embryo development of the DUI species R. philippinarum, so that we propose them as candidate factors of the W/X/Z/S system.


Assuntos
Bivalves/embriologia , Bivalves/genética , Genes Mitocondriais , Animais , DNA Mitocondrial/genética , Feminino , Masculino , Mitocôndrias/genética , Mitocôndrias/fisiologia , Óvulo/citologia , Processos de Determinação Sexual/genética , Razão de Masculinidade , Espermatozoides/citologia , Transcriptoma , Ubiquitinação
19.
Evodevo ; 14(1): 2, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717890

RESUMO

BACKGROUND: In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic. RESULTS: Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences. CONCLUSIONS: Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.

20.
Genome Biol Evol ; 15(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37850870

RESUMO

Bivalves are a diverse group of molluscs that have recently attained a central role in plenty of biological research fields, thanks to their peculiar life history traits. Here, we propose that bivalves should be considered as emerging model systems also in sex-determination (SD) studies, since they would allow to investigate: 1) the transition between environmental and genetic SD, with respect to different reproductive backgrounds and sexual systems (from species with strict gonochorism to species with various forms of hermaphroditism); 2) the genomic evolution of sex chromosomes (SCs), considering that no heteromorphic SCs are currently known and that homomorphic SCs have been identified only in a few species of scallops; 3) the putative role of mitochondria at some level of the SD signaling pathway, in a mechanism that may resemble the cytoplasmatic male sterility of plants; 4) the evolutionary history of SD-related gene (SRG) families with respect to other animal groups. In particular, we think that this last topic may lay the foundations for expanding our understanding of bivalve SD, as our current knowledge is quite fragmented and limited to a few species. As a matter of fact, tracing the phylogenetic history and diversity of SRG families (such as the Dmrt, Sox, and Fox genes) would allow not only to perform more targeted functional experiments and genomic analyses, but also to foster the possibility of establishing a solid comparative framework.


Assuntos
Bivalves , Humanos , Animais , Filogenia , Bivalves/genética , Genoma , Genômica , Mitocôndrias/genética , Processos de Determinação Sexual/genética , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA