Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32041869

RESUMO

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismo
2.
Glob Chang Biol ; 21(2): 708-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25205425

RESUMO

Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 µmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 µmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 µmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 µmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.


Assuntos
Movimentos do Ar , Conservação dos Recursos Naturais/métodos , Florestas , Árvores/fisiologia , Gorgulhos/fisiologia , Animais , Ritmo Circadiano , Estações do Ano , Wyoming
3.
Proc Natl Acad Sci U S A ; 107(18): 8492-7, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404162

RESUMO

A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Populus/genética , Estudo de Associação Genômica Ampla , Folhas de Planta/genética , Raízes de Plantas/genética , Locos de Características Quantitativas , Xilema/genética
4.
Tree Physiol ; 40(2): 142-157, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860720

RESUMO

A critical process that allows multiple, similar species to coexist in an ecological community is their ability to partition local habitat gradients. The mechanisms that underlie this separation at local scales may include niche differences associated with their biogeographic history, differences in ecological function associated with the degree of shared ancestry and trait-based performance differences, which may be related to spatial or temporal variation in habitat. In this study we measured traits related to water-use, growth and stress tolerance in mature trees and seedlings of three oak species (Quercus alba L., Quercus falcata Michx. and Quercus palustris Münchh). which co-occur in temperate forests across the eastern USA but tend to be found in contrasting hydrologic environments. The three species showed significant differences in their local distributions along a hydrologic gradient. We tested three possible mechanisms that influence their contrasting local environmental distributions and promote their long-term co-existence: (i) differences in their climatic distributions across a broad geographic range, (ii) differences in functional traits related to water use, drought tolerance and growth and (iii) contrasting responses to temporal variation in water availability. We identified key differences between the species in both their range-wide climatic distributions (especially aridity index and mean annual temperature) and physiological traits in mature trees and seedlings, including daily water loss, hydraulic conductance, stress responses, growth rate and biomass allocation. Taken together, these differences explain the habitat partitioning that allows three closely related species to co-occur locally.


Assuntos
Quercus , Secas , Ecossistema , Hidrologia , Árvores
5.
New Phytol ; 182(4): 878-890, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19291008

RESUMO

The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.


Assuntos
Biomassa , Nitrogênio/farmacologia , Populus/crescimento & desenvolvimento , Populus/genética , Madeira/química , Madeira/genética , Células Clonais , Fertilizantes , Ligação Genética , Espectrometria de Massas , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Populus/efeitos dos fármacos , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
6.
Ecology ; 87(7 Suppl): S109-22, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16922307

RESUMO

Consideration of the scale at which communities are defined both taxonomically and spatially can reconcile apparently contradictory results on the extent to which plants show phylogenetic niche conservatism. In plant communities in north central Florida, we collected species abundances in 55 0.1-ha plots in several state parks. When communities were defined narrowly to include a single phylogenetic lineage, such as Quercus, Pinus, or Ilex, neighbors tended to be less related than expected (phylogenetic overdispersion) or there was no pattern. If the same communities were defined more broadly, such as when all seed plants were included, neighbors tended to be more related than expected (phylogenetic clustering). These results provide evidence that species interactions among close relatives influence community structure, but they also show that niche conservatism is increasingly evident as communities are defined to include greater phylogenetic diversity. We also found that, as the spatial scale is increased to encompass greater environmental heterogeneity, niche conservatism emerges as the dominant pattern. We then examined patterns of trait evolution in relation to trait similarity within communities for 11 functional traits for a single phylogenetic lineage (Quercus) and for all woody plants. Among the oaks, convergent evolution of traits important for environmental filtering contributes to the observed pattern of phylogenetic overdispersion. At the broader taxonomic scale, traits tend to be conserved, giving rise to phylogenetic clustering. The shift from overdispersion to clustering can be explained by the increasing conservatism of traits at broader phylogenetic scales.


Assuntos
Filogenia , Plantas/classificação , Evolução Biológica , Ecossistema , Florida , Geografia , Plantas/genética , Quercus/classificação , Quercus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA