Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nature ; 575(7781): 180-184, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695210

RESUMO

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.


Assuntos
Monitoramento Ambiental , Metano/análise , Gerenciamento de Resíduos , California , Efeito Estufa , Esterco , Metano/química , Metano/metabolismo , Gás Natural , Indústria de Petróleo e Gás/métodos , Petróleo , Águas Residuárias
2.
Proc Natl Acad Sci U S A ; 119(38): e2202338119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099297

RESUMO

Understanding, prioritizing, and mitigating methane (CH4) emissions requires quantifying CH4 budgets from facility scales to regional scales with the ability to differentiate between source sectors. We deployed a tiered observing system for multiple basins in the United States (San Joaquin Valley, Uinta, Denver-Julesburg, Permian, Marcellus). We quantify strong point source emissions (>10 kg CH4 h-1) using airborne imaging spectrometers, attribute them to sectors, and assess their intermittency with multiple revisits. We compare these point source emissions to total basin CH4 fluxes derived from inversion of Sentinel-5p satellite CH4 observations. Across basins, point sources make up on average 40% of the regional flux. We sampled some basins several times across multiple months and years and find a distinct bimodal structure to emission timescales: the total point source budget is split nearly in half by short-lasting and long-lasting emission events. With the increasing airborne and satellite observing capabilities planned for the near future, tiered observing systems will more fully quantify and attribute CH4 emissions from facility to regional scales, which is needed to effectively and efficiently reduce methane emissions.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Metano/análise , Estados Unidos
3.
Am J Obstet Gynecol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955323

RESUMO

BACKGROUND: Elagolix, an approved oral treatment for endometriosis-associated pain, has been associated with hypoestrogenic effects when used as monotherapy. Hormonal add-back therapy has the potential to mitigate these effects. OBJECTIVE: To evaluate efficacy, tolerability, and bone density outcomes of elagolix 200 mg twice daily with 1 mg estradiol/0.5 mg norethindrone acetate (add-back) therapy once daily compared with placebo in premenopausal women with moderate-to-severe endometriosis-associated pain. STUDY DESIGN: This ongoing, 48-month, phase 3 study consists of a 12-month double-blind period, with randomization 4:1:2 to elagolix 200 mg twice daily with add-back therapy, elagolix 200 mg twice daily monotherapy for 6 months followed by elagolix with add-back therapy, or placebo. The coprimary endpoints were proportion of patients with clinical improvement (termed "responders") in dysmenorrhea and nonmenstrual pelvic pain at month 6. We report 12-month results on efficacy of elagolix with add-back therapy vs placebo in reducing dysmenorrhea, nonmenstrual pelvic pain, dyspareunia, and fatigue. Tolerability assessments include adverse events and change from baseline in bone mineral density. RESULTS: A total of 679 patients were randomized to elagolix with add-back therapy (n=389), elagolix monotherapy (n=97), or placebo (n=193). Compared with patients randomized to placebo, a significantly greater proportion of patients randomized to elagolix with add-back therapy responded with clinical improvement in dysmenorrhea (62.8% vs 23.7%; P≤.001) and nonmenstrual pelvic pain (51.3% vs 36.8%; P≤.001) at 6 months. Compared with placebo, elagolix with add-back therapy produced significantly greater improvement from baseline in 7 hierarchically ranked secondary endpoints including dysmenorrhea (months 12, 6, 3), nonmenstrual pelvic pain (months 12, 6, 3), and fatigue (months 6) (all P<.01). Overall, the incidence of adverse events was 73.8% with elagolix plus add-back therapy and 66.8% with placebo. The rate of severe and serious adverse events did not meaningfully differ between treatment groups. Study drug discontinuations associated with adverse events were low in patients receiving elagolix with add-back therapy (12.6%) and those receiving placebo (9.8%). Patients randomized to elagolix monotherapy exhibited decreases from baseline in bone mineral density of -2.43% (lumbar spine), -1.54% (total hip), and -1.78% (femoral neck) at month 6. When add-back therapy was added to elagolix at month 6, the change from baseline in bone mineral density remained in a similar range of -1.58% to -1.83% at month 12. However, patients who received elagolix plus add-back therapy from baseline exhibited little change from baseline in bone mineral density (<1% change) at months 6 and 12. CONCLUSION: Compared with placebo, elagolix with add-back therapy resulted in significant, clinically meaningful improvement in dysmenorrhea, nonmenstrual pelvic pain, and fatigue at 6 months that continued until month 12 for both dysmenorrhea and nonmenstrual pelvic pain. Elagolix with add-back therapy was generally well tolerated. Loss of bone mineral density at 12 months was greater in patients who received elagolix with add-back therapy than those who received placebo. However, the change in bone mineral density with elagolix plus add-back therapy was <1% and was attenuated compared with bone loss observed with elagolix monotherapy.

4.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36353841

RESUMO

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Assuntos
Sequestro de Carbono , Ecossistema , Solo , Dióxido de Carbono/análise , Tundra , Regiões Árticas , Ciclo do Carbono , Plantas , Carbono/análise
5.
Glob Chang Biol ; 29(7): 1870-1889, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36647630

RESUMO

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco ), net ecosystem CO2 exchange (NEE; Reco - GPP), and terrestrial methane (CH4 ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO2 -C year-1 . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4 ) were estimated at 35 Tg CH4 -C year-1 . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.


Assuntos
Ecossistema , Taiga , Carbono , Dióxido de Carbono , Tundra , Metano , Ciclo do Carbono
6.
Proc Natl Acad Sci U S A ; 117(43): 26681-26687, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046637

RESUMO

Measurements of Δ14C and CO2 can cleanly separate biogenic and fossil contributions to CO2 enhancements above background. Our measurements of these tracers in air around Los Angeles in 2015 reveal high values of fossil CO2 and a significant and seasonally varying contribution of CO2 from the urban biosphere. The biogenic CO2 is composed of sources such as biofuel combustion and human metabolism and an urban biospheric component likely originating from urban vegetation, including turf and trees. The urban biospheric component is a source in winter and a sink in summer, with an estimated amplitude of 4.3 parts per million (ppm), equivalent to 33% of the observed annual mean fossil fuel contribution of 13 ppm. While the timing of the net carbon sink is out of phase with wintertime rainfall and the sink seasonality of Southern California Mediterranean ecosystems (which show maximum uptake in spring), it is in phase with the seasonal cycle of urban water usage, suggesting that irrigated urban vegetation drives the biospheric signal we observe. Although 2015 was very dry, the biospheric seasonality we observe is similar to the 2006-2015 mean derived from an independent Δ14C record in the Los Angeles area, indicating that 2015 biospheric exchange was not highly anomalous. The presence of a large and seasonally varying biospheric signal even in the relatively dry climate of Los Angeles implies that atmospheric estimates of fossil fuel-CO2 emissions in other, potentially wetter, urban areas will be biased in the absence of reliable methods to separate fossil and biogenic CO2.


Assuntos
Dióxido de Carbono/análise , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Ciclo do Carbono , Combustíveis Fósseis , Humanos , Los Angeles , Estações do Ano , Emissões de Veículos
7.
Global Biogeochem Cycles ; 36(3): e2021GB007162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865754

RESUMO

The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995-2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year-1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2% (1.4 Pg C). In the upper 100 m, which stores roughly 13% (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year-1) and biological processes are the largest loss (8.6 Pg C year-1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997-1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink.

8.
Global Biogeochem Cycles ; 36(9): e2021GB007216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36590828

RESUMO

The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year-1, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr-1 for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.

9.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34149111

RESUMO

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

10.
J Minim Invasive Gynecol ; 28(3): 575-586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33249267

RESUMO

OBJECTIVE: To establish an endometrioma treatment paradigm (decision tree) in the treatment of an ovarian endometrioma through the review of current literature. DATA SOURCES: A thorough literature search, including PubMed, Google Scholar, and the Cochrane Library, was performed from April 2020 to July 2020. The review was completed by using the following keywords: METHODS OF STUDY SELECTION: Articles published in English that addressed the endometrioma in regard to the following were included: (1) diagnosis, (2) treatment of pain on the basis of size and/or surgical intervention, (3) treatment of fertility on the basis of size and/or surgical intervention, (4) surgical technique, (5) in vitro fertilization success on the basis of size and/or surgical intervention, (6) risk of rupture at the time of egg retrieval, (7) impact on the antimüllerian hormone and antral follicle count postsurgery, and (8) impact on implantation. TABULATION, INTEGRATION, AND RESULTS: Fifty-six articles were included in this systematic review. While conducting this literature review, several themes were noted. In general, the literature on the ovarian endometrioma seems to be homogeneous in regard to imaging the endometrioma, excision rather than desiccation for an endometrioma ≥3-cm causing pain and/or infertility, minimal use of bipolar energy at the time of ovarian surgery, and risk of severe infection secondary to inadvertent rupture of cysts during egg retrieval. Conversely, studies on the ovarian endometrioma are much more heterogeneous in terms of surgery and assisted reproductive technology, that is, whether surgery should be performed. Certainly, an endometrioma ≥5-cm should be excised before assisted reproductive technology. Moreover, it seems that the antral follicle count and implantation may be enhanced with surgery. CONCLUSION: By completing an extensive literature review, an easy-to-use algorithm for the diagnosis, evaluation, and treatment of endometriomas was developed to help clinicians in their treatment of patients with endometriosis in the short and long terms.


Assuntos
Endometriose/cirurgia , Preservação da Fertilidade/métodos , Fertilização in vitro/métodos , Procedimentos Cirúrgicos em Ginecologia/métodos , Infertilidade Feminina/prevenção & controle , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA