Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(31): 12701-12709, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039062

RESUMO

Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 µm in diameter to 400 µm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.


Assuntos
Microeletrodos , Nanotubos de Carbono , Impressão Tridimensional , Nanotubos de Carbono/química , Animais , Serotonina/análise , Poliésteres/química , Fuligem/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos
2.
Biosens Bioelectron ; 254: 116224, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513539

RESUMO

Extracellular vesicles (EVs) are pivotal in cell-to-cell communication due to the array of cargo contained within these vesicles. EVs are considered important biomarkers for identification of disease, however most measurement approaches have focused on monitoring specific surface macromolecular targets. Our study focuses on exploring the electroactive component present within cargo from EVs obtained from various cancer and non-cancer cell lines using a disk carbon fiber microelectrode. Variations in the presence of oxidizable components were observed when the total cargo from EVs were measured, with the highest current detected in EVs from MCF7 cells. There were differences observed in the types of oxidizable species present within EVs from MCF7 and A549 cells. Single entity measurements showed clear spikes due to the detection of oxidizable cargo within EVs from MCF7 and A549 cells. These studies highlight the promise of monitoring EVs through the presence of varying electroactive components within the cargo and can drive a wave of new strategies towards specific detection of EVs for diagnosis and prognosis of various diseases.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Neoplasias , Humanos , Linhagem Celular Tumoral , Células MCF-7 , Comunicação Celular , Neoplasias/diagnóstico , Neoplasias/metabolismo
3.
Sci Rep ; 13(1): 339, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611084

RESUMO

3D printing provides a reliable approach for the manufacture of carbon thermoplastic composite electrochemical sensors. Many studies have explored the impact of printing parameters on the electrochemical activity of carbon thermoplastic electrodes but limited is known about the influence of instrument parameters, which have been shown to alter the structure and mechanical strength of 3D printed thermoplastics. We explored the impact of extruder temperature, nozzle diameter and heated bed temperature on the electrochemical activity of carbon black/poly-lactic acid (CB/PLA) electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were conducted using standard redox probes. The electrode surface and cross-section of the electrode was visualised using scanning electron microscopy. We found that using extruder temperatures of 230 °C and 240 °C improved the electrochemical activity of CB/PLA electrodes, due to an increase in surface roughness and a reduction in the number of voids in-between print layers. Nozzle diameter, heated bed temperature of different 3D printers did not impact the electrochemical activity of CB/PLA electrodes. However high-end printers provide improved batch reproducibility of electrodes. These findings highlight the key instrument parameters that need to be considered when manufacturing carbon thermoplastic composite electrochemical sensors when using 3D printing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA