Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 53(13): C45-53, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24921889

RESUMO

Short-wave infrared (SWIR) imaging sensors are increasingly being used in surveillance and reconnaissance systems due to the reduced scatter in haze and the spectral response of materials over this wavelength range. Typically SWIR images have been provided either as full motion video from framing panchromatic systems or as spectral data cubes from line-scanning hyperspectral or multispectral systems. Here, we describe and characterize a system that bridges this divide, providing nine-band spectral images at 30 Hz. The system integrates a custom array of filters onto a commercial SWIR InGaAs array. We measure the filter placement and spectral response. We demonstrate a simple simulation technique to facilitate optimization of band selection for future sensors.

2.
Ultrasonics ; 54(1): 247-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23731948

RESUMO

In this paper, the authors present a formal classification routine to characterize flaw severity in an aircraft-grade aluminum plate using Lamb waves. A rounded rectangle flat-bottom hole is incrementally introduced into the plate, and at each depth multi-mode Lamb wave signals are collected to study the changes in received signal due to mode conversion and scattering from the flaw. Lamb wave tomography reconstructions are used to locate and size the flaw at each depth, however information about the severity of the flaw is obscured when the flaw becomes severe enough that scattering effects dominate. The dynamic wavelet fingerprint is then used to extract features from the raw Lamb wave signals, and supervised pattern classification techniques are used to identify flaw severity with up to 80.7% accuracy for a training set and up to 51.7% accuracy on a series of validation data sets extracted from independent plate samples.


Assuntos
Aeronaves/instrumentação , Algoritmos , Alumínio/química , Análise de Falha de Equipamento/métodos , Teste de Materiais/métodos , Reconhecimento Automatizado de Padrão/métodos , Ultrassonografia/métodos , Alumínio/análise , Desenho de Equipamento
3.
Ultrasonics ; 52(2): 193-207, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21908011

RESUMO

We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.


Assuntos
Ultrassom , Análise de Elementos Finitos , Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA