Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(65): e202302136, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37572364

RESUMO

A Mn(II) salt and A+ CN- under anaerobic conditions react to form 2-D and 3-D extended structured compounds of Am MnII n (CN)m+2n stoichiometry. Here, the creation and characterization of this large family of compounds, for example AMnII 3 (CN)7 , A2 MnII 3 (CN)8 , A2 MnII 5 (CN)12 , A3 MnII 5 (CN)13 , and A2 MnII [MnII (CN)6 ], where A represents alkali and tetraalkylammonium cations, is reviewed. Cs2 MnII [MnII (CN)6 ] has the typical Prussian blue face centered cubic unit cell. However, the other alkali salts are monoclinic or rhombohedral. This is in accord with smaller alkali cation radii creating void space that is minimized by increasing the van der Waals stabilization energy by reducing ∠Mn-N≡C, which, strengthens the magnetic coupling and increases the magnetic ordering temperatures. This is attributed to the non-rigidity of the framework structure due the significant ionic character associated with the high-spin MnII sites. For larger tetraalkylammonium cations, the high-spin Mn sites lack sufficient electrostatic A+ ⋅⋅⋅NC stabilization and form unexpected 4- and 5-coordinated Mn sites within a flexible, extended framework around the cation; hence, the size, shape, and charge of the cation dictate the unprecedented stoichio-metry and unpredictable cation adaptive structures. Antiferromagnetic coupling between adjacent MnII sites leads to ferrimagnetic ordering, but in some cases antiferromagnetic coupling of ferrimagnetic layers are compensated and synthetic antiferromagnets are observed. The magnetic ordering temperatures for ferrimagnetic A2 MnII [MnII (CN)6 ] with both octahedral high- and low-spin MnII sites increase with decreasing ∠Mn-N≡C. The crystal structures for all of the extended structured materials were obtained by powder diffraction.

2.
Chemistry ; 28(52): e202201342, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35781356

RESUMO

Layered (2D) artificial (or synthetic) antiferromagnets are fabricated by atom deposition techniques and possess very thin, nanometer-scale, magnetically ordered layers separated by a very thin nonmagnetic layer that antiferromagnetically couples the magnetic layers. Artificial antiferromagnets were crucial in the discovery of the giant magnetic effect (GMR), which had an incredible impact on the evolution of computer memory and its applications, and nucleated the dawn of spintronics (magnetoelectrics). The fundamental structural motif has been more recently achieved by using synthetic chemical methods that led to insulating artificial antiferromagnets. Examples of magnetically ordered layers that are antiferromagnetic coupled to form artificial antiferromagnets have been extended to isolated ions (0D) as well as extended chain (1D) and extended network 3D structures, and new phenomena and applications are anticipated as insulating antiferromagnets are more effective at propagating spin currents with respect to dielectric materials.

3.
Inorg Chem ; 60(17): 12766-12771, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492765

RESUMO

The pressure dependence of the magnetic properties of rhombohedral Na2Mn[Mn(CN)6] up to 10 kbar has been studied. The magnetic ordering temperature, Tc, for Na2Mn[Mn(CN)6] reversibly increases with increasing applied hydrostatic pressure, P, by 9.0 K (15.2%) to 68 K at 10 kbar with an average rate of increase, dTc/dP, of 0.86 K/kbar. The magnetization at 50 kOe and remanent magnetization, Mr(H), remain constant with an average value of 13,100 ± 200 and 8500 ± 200 emuOe/mol. The coercive field Hcr increases by 12% from 13,400 to 15,000 Oe. The increase and rate of increase of Tc for rhombohedral Na2Mn[Mn(CN)6] are reduced with respect to monoclinic A2Mn[Mn(CN)6] (A = K and Rb), but they are still greater than those of cubic Cs2Mn[Mn(CN)6]. This is attributed to the compression of the MnNC framework bonding without decreasing ∠MnII-N≡C, maintaining the unit cell in accord with cubic A = Cs at lower applied pressures, and not due to reduction in ∠MnII-N≡C, which correlates with increasing Tc that is reported for A = K and Rb as well as Cs at higher applied pressures.

4.
Chemistry ; 26(1): 230-236, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31613014

RESUMO

The principal values of the 13 C chemical shift tensor for the ß and δ polymorphs of π-[TTF⋅⋅⋅TCNE] (TTF=tetrathiafulvalene; TCNE=tetracyanoethylene) have been analyzed to understand the abnormally long intra-dimer bonding of singlet π-[TTFδ+ ⋅⋅⋅TCNEδ- ]. These structures possess 12 intradimer contacts <3.40 Å, with the shortest intra π-[TTF⋅⋅⋅TCNE] separations involving 2-center (2c) C-S and 3c C-C-C orbital overlap contributions between the [TTF]δ+ and [TCNE]δ- . This solid-state NMR study compares the [TTF⋅⋅⋅TCNE] 13 C tensor data against previously reported π-[TTF]2 2+ and π-[TCNE]2 2- homo-dimers to determine how the tensor principal values change as a function of electronic structure for both TTF and TCNE moieties. In the ß and δ phases of [TTF⋅⋅⋅TCNE], the TCNE ethylenic 13 C shift tensors predict TCNE oxidation states of -0.46 and -0.73, respectively. The TTF sites are less similar to benchmark 13 C data with the ß-phase differing primarily in the ethylenic π-electrons. The δ form differs significantly from the homo-dimer data at all principal values at both the ethylenic and CH sites, indicating changes to both the π-electrons and σ-bonds. In both hetero-dimer phases, the NMR changes supports long bond formation at nitrile and CH sites not observed in homo-dimers.

5.
Chemistry ; 26(67): 15565-15572, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32427369

RESUMO

The reactions of MnII (O2 CCH3 )2 with NEt3 Me+ CN- and NEt2 Me2 + CN- form (NEt3 Me)2 MnII 5 (CN)12 (1) and (NEt2 Me2 )2 MnII 5 (CN)12 (2), respectively. Structure model-building and Rietveld refinement of high-resolution synchrotron powder diffraction data revealed a cubic [a=24.0093 Š(1), 23.8804 Š(2)] 3D extended structural motif with adjacent tetrahedral and octahedral MnII sites in a 3:2 ratio. Each tetrahedral MnII site is surrounded by four low-spin octahedral MnII sites, and each octahedral MnII site is surrounded by six high-spin tetrahedral MnII sites; adjacent sites are antiferromagnetically coupled in 3D. Compensation does not occur, and magnetic ordering as a ferrimagnet is observed at Tc =13 K for 2 based on the temperature at which remnant magnetization, Mr (T)→0. The hysteresis has an unusual constricted shape with inflection points around 50 and 1.2 kOe with a 5 K coercivity of 16 Oe and remnant magnetization, Mr , of 2050 emuOe mol-1 . The unusual structure and stoichiometry are attributed to the very ionic nature of the high-spin N-bonded MnII ion, which enables the maximization of the attractive van der Waals interactions through minimization of void space via a reduced ∠ MnNC. This results in an additional example of the Ax MnII y (CN)x+2y (x=0, y=1; x=1, y=3; x=2, y=1; x=2, y=2; x=2, y=3; x=3, y=5; and x=4, y=1) family of compounds possessing an unprecedented stoichiometry and lattice motif that are cation adaptive structured materials.

6.
J Am Chem Soc ; 141(2): 911-921, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30557002

RESUMO

The size of the organic cation dictates both the composition and the extended 3-D structure for hybrid organic/inorganic Prussian blue analogues (PBAs) of A aMnII b(CN) a+2 b (A = cation) stoichiometry. Alkali PBAs are typically cubic with both MC6 and M'N6 octahedral coordination sites and the alkali cation content depends on the M and M' oxidation states. The reaction of MnII(O2CCH3)2 and A+CN- (A = NMe4, NEtMe3) forms a hydrated material of A3MnII5(CN)13 composition. A3MnII5(CN)13 forms a complex, 3-D extended structural motif with octahedral and rarely observed square pyramidal and trigonal bipyramidal MnII sites with a single layer motif of three pentagonal and one triangular fused rings. A complex pattern of MnIICN chains bridge the layers. (NMe4)3MnII5(CN)13 possesses one low-spin octahedral and four high-spin pentacoordinate MnII sites and orders as an antiferromagnet at 11 K due to the layers being bridged and antiferromagnetically coupled by the nonmagnetic cyanides. These are rare examples of intrinsic, chemically prepared and controlled artificial antiferromagnets and have the advantage of having controlled uniform spacing between the layers as they are not physically prepared via deposition methods. A3Mn5(CN)13 (A = NMe4, NEtMe3) along with [NEt4]2MnII3(CN)8, [NEt4]MnII3(CN)7, and Mn(CN)2 form stoichiometrically related A aMnII b(CN) a+2 b ( a = 0, b = 1; a = 2, b = 3; a = 1, b = 3; and a = 3, b = 5) series possessing unprecedented stoichiometries and lattice motifs. These unusual structures and stoichiometries are attributed to the very ionic nature of the high-spin N-bonded MnII ion that enables the maximization of the attractive van der Waals interactions via minimization of void space via a reduced ∠MnNC. This A aMnII b(CN) a+2 b family of compounds are referred to as being cation adaptive in which size and shape dictate both the stoichiometry and structure.

7.
Nat Mater ; 17(4): 308-312, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531369

RESUMO

Magnonics concepts utilize spin-wave quanta (magnons) for information transmission, processing and storage. To convert information carried by magnons into an electric signal promises compatibility of magnonic devices with conventional electronic devices, that is, magnon spintronics 1 . Magnons in inorganic materials have been studied widely with respect to their generation2,3, transport4,5 and detection 6 . In contrast, resonant spin waves in the room-temperature organic-based ferrimagnet vanadium tetracyanoethylene (V(TCNE) x (x ≈ 2)), were detected only recently 7 . Herein we report room-temperature coherent magnon generation, transport and detection in films and devices based on V(TCNE) x using three different techniques, which include broadband ferromagnetic resonance (FMR), Brillouin light scattering (BLS) and spin pumping into a Pt adjacent layer. V(TCNE) x can be grown as neat films on a large variety of substrates, and it exhibits extremely low Gilbert damping comparable to that in yttrium iron garnet. Our studies establish an alternative use for organic-based magnets, which, because of their synthetic versatility, may substantially enrich the field of magnon spintronics.

8.
Chemistry ; 25(48): 11177-11179, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31373421

RESUMO

Segment of a periodic table depicting the elements that are molecular/atomic (blue) and that have extended network structures (gray) at STP.

9.
Chemistry ; 25(7): 1752-1757, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30286266

RESUMO

The reaction of MnII (O2 CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII 4 (µ3 -OH)4 ]4+ cubes and octahedral [MnII (CN)6 ]4- ions interconnected in 3D by MnII -N≡C-MnII linkages. The composition is {[MnII (OH2 )3 ][MnII (OH2 )]3 }(µ3 -OH)4 ][MnII (µ-CN)2 (CN)4 ]⋅H2 O=[MnII 4 (µ3 -OH)4 (OH2 )6 ][MnII (µ-CN)2 (CN)4 ]⋅H2 O, which is further simplified to [Mn4 (OH)4 ][Mn(CN)6 ](OH2 )7 (1). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII (CN)6 ]4- ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie-Weiss expression, χ ∝(T-θ)-1 , with θ=-13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc =7.8 K.

10.
Chemistry ; 24(1): 222-229, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29029371

RESUMO

Photovoltaic perovskites, most notably methylammonium lead triiodide, (NH3 Me)PbI3 , have recently attracted considerable attention, and based upon the modified "Goldschmidt" as well as a "revised" tolerance factors, hydrazinium should be able to occupy the same cation site as methylammonium, and form a cubic unit cell. The reaction of N2 H5+ I- with PbI2 in dimethylformamide results in three types of yellow crystals; hexagonal, needle-like, and rod-like, the structures of which were determined at 100 K. The hexagonal (P63 /m: a=10.8906(10) Å; b=37.845(5) Å) crystals possess isolated face-sharing octahedral [Pb2 I9 ]5- , [PbI6 ]4- , and I- ions. IR spectroscopy indicates the presence of hydrogen-bonded N2 H5+ and the composition was determined by single-crystal X-ray diffraction, density measurements, combustion elemental analysis, and thermogravimetric analysis to be (N2 H5 )15 Pb3 I21 , which is photoluminescent at 50 K, but not at room temperature. The needle and rod crystals have an orthorhombic (Pnma: a=11.1385(7) Å; b=4.4806(3) Å; c=17.6241(11) Å) and hexagonal (P63 /mmc: a=8.7386(9) Å; b=8.2006(9) Å) unit cells, respectively, possessing the perovskite ABX3 composition of (N2 H5 )PbI3 , but neither exhibits the cubic Perovskite structure type. The structures of α- and ß-(N2 H5 )PbI3 possess parallel ribbons of Pb2 I4 and chains of PbI2 , respectively. Strong inter-hydrazinium hydrogen bonding due to it possessing both hydrogen bonding donor and acceptor sites (unlike NH3 Me+ ) appear to stabilize the observed extended ribbon motif for (N2 H5 )15 Pb3 I21 and α-(N2 H5 )PbI3 . (N2 H5 )15 Pb3 I21 has a band-gap-like absorption of 2.34 eV, and both α- and ß-(N2 H5 )PbI3 have a 2.70 eV band-gap-like absorptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA