Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(26): e202400188, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38411034

RESUMO

Herein, we present an efficient and atom-economic tandem hydroformylation organocatalyzed Friedel-Crafts reaction sequence for the synthesis of diindolylmethanes. Classic syntheses have relied on (Lewis) acid activation of aldehydes, which are often not commercially available and rather sensitive in handling. In contrast, the combination of rhodium-catalyzed hydroformylation and subsequent organocatalytic activation of the in-situ formed aldehydes allows the use of readily available and stable alkenes with various functional groups while avoiding acidic conditions to expand the range of available diindolylmethanes. A broad scope of diindolylmethanes was prepared in yields up to 85 % demonstrates the utility of the presented method.

2.
Chemistry ; 30(9): e202303752, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38109037

RESUMO

Herein, a highly efficient five-step reaction sequence to BODIPYs is presented. The key step is the combination of transition metal-catalyzed in-situ generation of aldehydes and their subsequent organocatalytic activation to yield dipyrromethanes, which are further converted to the corresponding BODIPY. Classic syntheses towards BODIPYs have relied on aldehydes or acid chlorides, which are often not commercially available and rather sensitive to handle. The presented approach starts from readily available and stable alkenes or aryl-bromides, which allows to extend the range of readily available BODIPYs that can be tailored for their specific use. The synthesis of 55 derivatives with overall yields of up to 78 % demonstrates the wide applicability and advantages of the presented method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA