Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931600

RESUMO

For individuals with spinal cord injuries (SCIs) above the midthoracic level, a common complication is the partial or complete loss of trunk stability in the seated position. Functional neuromuscular stimulation (FNS) can restore seated posture and other motor functions after paralysis by applying small electrical currents to the peripheral motor nerves. In particular, the Networked Neuroprosthesis (NNP) is a fully implanted, modular FNS system that is also capable of capturing information from embedded accelerometers for measuring trunk tilt for feedback control of stimulation. The NNP modules containing the accelerometers are located in the body based on surgical constraints. As such, their exact orientations are generally unknown and cannot be easily assessed. In this study, a method for estimating trunk tilt that employed the Gram-Schmidt method to reorient acceleration signals to the anatomical axes of the body was developed and deployed in individuals with SCI using the implanted NNP system. An anatomically realistic model of a human trunk and five accelerometer sensors was developed to verify the accuracy of the reorientation algorithm. Correlation coefficients and root mean square errors (RMSEs) were calculated to compare target trunk tilt estimates and tilt estimates derived from simulated accelerometer signals under a variety of conditions. Simulated trunk tilt estimates with correlation coefficients above 0.92 and RMSEs below 5° were achieved. The algorithm was then applied to accelerometer signals from implanted sensors installed in three NNP recipients. Error analysis was performed by comparing the correlation coefficients and RMSEs derived from trunk tilt estimates calculated from implanted sensor signals to those calculated via motion capture data, which served as the gold standard. NNP-derived trunk tilt estimates exhibited correlation coefficients between 0.80 and 0.95 and RMSEs below 13° for both pitch and roll in most cases. These findings suggest that the algorithm is effective at estimating trunk tilt with the implanted sensors of the NNP system, which implies that the method may be appropriate for extracting feedback signals for control systems for seated stability with NNP technology for individuals who have reduced control of their trunk due to paralysis.


Assuntos
Acelerometria , Algoritmos , Tronco , Humanos , Acelerometria/métodos , Tronco/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Próteses Neurais , Postura/fisiologia
2.
Neuromodulation ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38752947

RESUMO

OBJECTIVES: Neuroprosthetic devices can improve quality of life by providing an alternative option for motor function lost after spinal cord injury, stroke, and other central nervous system disorders. The objective of this study is to analyze the outcomes of implanted pulse generators that our research group installed in volunteers with paralysis to assist with lower extremity function over a 25-year period, specifically, to determine survival rates and common modes of malfunction, reasons for removal or revision, and precipitating factors or external events that may have adversely influenced device performance. MATERIALS AND METHODS: Our implantable receiver-stimulator (IRS-8) and implantable stimulator-telemeter (IST-12 and IST-16) device histories were retrospectively reviewed through surgical notes, regulatory documentation, and manufacturing records from 1996 to 2021. RESULTS: Most of the 65 devices (64.6%) implanted in 43 volunteers remain implanted and operational. Seven underwent explantation owing to infection; seven had internal failures, and six were physically broken by external events. Of the 22 devices explanted, 15 were successfully replaced to restore recipients' enhanced functionality. There were no instances of sepsis or major health complications. The five infections that followed all 93 IRS and IST lower extremity research surgeries during this period indicate a pooled infection rate of 5.4%. The Kaplan-Meier analysis of technical malfunctions between the implant date and most recent follow-up shows five-, ten-, and 20-year device survival rates of 92%, 84%, and 71%, respectively. CONCLUSIONS: Incidence of malfunction is similar to, whereas infection rates are slightly higher than, other commonly implanted medical devices. Future investigations will focus on infection prevention, modifying techniques on the basis of recipient demographics, lifestyle factors, and education, and integrating similar experience of motor neuroprostheses used in other applications.

3.
Aging Brain ; 6: 100122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148934

RESUMO

Older adults with impairment in contrast sensitivity (CS), the ability to visually perceive differences in light and dark, are more likely to demonstrate limitations in mobility function, but the mechanisms underlying this relationship are poorly understood. We sought to determine if functional brain networks important to visual processing and mobility may help elucidate possible neural correlates of this relationship. This cross-sectional analysis utilized functional MRI both at rest and during a motor imagery (MI) task in 192 community-dwelling, cognitively-unimpaired older adults ≥ 70 years of age from the Brain Networks and Mobility study (B-NET). Brain networks were partitioned into network communities, groups of regions that are more interconnected with each other than the rest of the brain, the spatial consistency of the communities for multiple brain subnetworks was assessed. Lower baseline binocular CS was significantly associated with degraded sensorimotor network (SMN) community structure at rest. During the MI task, lower binocular CS was significantly associated with degraded community structure in both the visual (VN) and default mode network (DMN). These findings may suggest shared neural pathways for visual and mobility dysfunction that could be targeted in future studies.

4.
Hum Mov Sci ; 93: 103175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198920

RESUMO

BACKGROUND: Capturing a measure of movement quality during a complex walking task may indicate the earliest signs of detrimental changes to the brain due to beta amyloid (Aß) deposition and be a potential differentiator of older adults at elevated and low risk of developing Alzheimer's disease. This study aimed to determine: 1) age-related differences in gait speed, stride length, and gait smoothness while transitioning from an even to an uneven walking surface, by comparing young adults (YA) and older adults (OA), and 2) if gait speed, stride length, and gait smoothness in OA while transitioning from an even to an uneven walking surface is influenced by the amount of Aß deposition present in an OA's brain. METHODS: Participants included 56 OA (>70 years of age) and 29 YA (25-35 years of age). In OA, Aß deposition in the brain was quantified by PET imaging. All participants completed a series of cognitive assessments, a functional mobility assessment, and self-report questionnaires. Then participants performed two sets of walking trials on a custom-built walkway containing a mixture of even and uneven surface sections, including three trials with a grass uneven surface and three trials with a rocks uneven surface. Gait data were recorded using a wireless inertial measurement unit system. Stride length, gait speed, and gait smoothness (i.e., log dimensionless lumbar jerk) in the anteroposterior (AP), mediolateral (ML), and vertical (VT) directions were calculated for each stride. Outcomes were retained for five stride locations immediately surrounding the surface transition. RESULTS: OA exhibited slower gait (Grass: p < 0.001; Rocks: p = 0.006), shorter strides (Grass: p < 0.001; Rocks: p = 0.008), and smoother gait (Grass AP: p < 0.001; Rocks AP: p = 0.002; Rocks ML: p = 0.02) than YA, but they also exhibited greater reductions in gait speed and stride length than YA while transitioning to the uneven grass and rocks surfaces. Within the OA group, those with greater Aß deposition exhibited decreases in smoothness with age (Grass AP: p = 0.02; Rocks AP: p = 0.03; Grass ML: p = 0.04; Rocks ML: p = 0.03), while those with lower Aß deposition exhibited increasing smoothness with age (Grass AP: p = 0.01; Rocks AP: p = 0.02; Grass ML: p = 0.08; Rocks ML: p = 0.07). Better functional mobility was associated with less smooth gait (Grass ML: p = 0.02; Rocks ML: p = 0.05) and with less variable gait smoothness (Grass and Rocks AP: both p = 0.04) in the OA group. CONCLUSION: These results suggest that, relative to YA, OA may be adopting more cautious, compensatory gait strategies to maintain smoothness when approaching surface transitions. However, OA with greater Aß deposition may have limited ability to adopt compensatory gait strategies to increase the smoothness of their walking as they get older because of neuropathological changes altering the sensory integration process and causing worse dynamic balance (i.e., jerkier gait). Functional mobility, in addition to age and Aß deposition, may be an important factor of whether or not an OA chooses to employ compensatory strategies to prioritize smoothness while walking and what type of compensatory strategy an OA chooses.


Assuntos
Transtornos dos Movimentos , Velocidade de Caminhada , Adulto Jovem , Humanos , Idoso , Adulto , Peptídeos beta-Amiloides , Marcha , Caminhada , Encéfalo
5.
Geroscience ; 46(5): 4987-5002, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38967698

RESUMO

Declining physical function with aging is associated with structural and functional brain network organization. Gaining a greater understanding of network associations may be useful for targeting interventions that are designed to slow or prevent such decline. Our previous work demonstrated that the Short Physical Performance Battery (eSPPB) score and body mass index (BMI) exhibited a statistical interaction in their associations with connectivity in the sensorimotor cortex (SMN) and the dorsal attention network (DAN). The current study examined if components of the eSPPB have unique associations with these brain networks. Functional magnetic resonance imaging was performed on 192 participants in the BNET study, a longitudinal and observational trial of community-dwelling adults aged 70 or older. Functional brain networks were generated for resting state and during a motor imagery task. Regression analyses were performed between eSPPB component scores (gait speed, complex gait speed, static balance, and lower extremity strength) and BMI with SMN and DAN connectivity. Gait speed, complex gait speed, and lower extremity strength significantly interacted with BMI in their association with SMN at rest. Gait speed and complex gait speed were interacted with BMI in the DAN at rest while complex gait speed, static balance, and lower extremity strength interacted with BMI in the DAN during motor imagery. Results demonstrate that different components of physical function, such as balance or gait speed and BMI, are associated with unique aspects of brain network organization. Gaining a greater mechanistic understanding of the associations between low physical function, body mass, and brain physiology may lead to the development of treatments that not only target specific physical function limitations but also specific brain networks.


Assuntos
Imageamento por Ressonância Magnética , Córtex Sensório-Motor , Humanos , Masculino , Feminino , Idoso , Córtex Sensório-Motor/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Estudos Longitudinais , Índice de Massa Corporal , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Equilíbrio Postural/fisiologia , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Atenção/fisiologia , Desempenho Físico Funcional , Velocidade de Caminhada/fisiologia , Força Muscular/fisiologia
6.
J Alzheimers Dis ; 100(1): 53-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820016

RESUMO

Background: A screening tool sensitive to Alzheimer's disease (AD) risk factors, such as amyloid-ß (Aß) deposition, and subtle cognitive changes, best elicited by complex everyday tasks, is needed. Objective: To determine if grocery shopping performance could differentiate older adults at elevated risk of developing AD (OAer), older adults at low risk of developing AD (OAlr), and young adults (YA), and if amount of Aß deposition could predict grocery shopping performance in older adults (OA). Methods: Twenty-one OAer (78±5 years), 33 OAlr (78±5 years), and 28 YA (31±3 years) performed four grocery shopping trials, with the best and worst performances analyzed. Measures included trial time, number of correct items, number of grocery note fixations, and number of fixations and percentage of time fixating on the correct shelving unit, correct brand, and correct shelf. Linear mixed effects models compared measures by performance rank (best, worst) and group (OAer, OAlr, YA), and estimated the effect of Aß deposition on measures in OA. Results: Relative to their best performance, OAer and OAlr exhibited more correct shelving unit fixations and correct brand fixations during their worst performance, while YA did not. Within OA's worst performance, greater Aß deposition was associated with a smaller percentage of time fixating on the correct shelving unit, correct shelf, and correct brand. Within OA, greater Aß deposition was associated with more grocery note fixations. Conclusions: OA with elevated Aß deposition may exhibit subtle working memory impairments and less efficient visual search strategies while performing a cognitively demanding everyday task.


Assuntos
Peptídeos beta-Amiloides , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Atividades Cotidianas , Envelhecimento/fisiologia , Envelhecimento/psicologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Testes Neuropsicológicos/estatística & dados numéricos , Tomografia por Emissão de Pósitrons
7.
Artigo em Inglês | MEDLINE | ID: mdl-38634503

RESUMO

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. While there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multi-center study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a pre-clinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 weeks of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 weeks. The adult component also includes recruitment of highly active endurance trained or resistance trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA