Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
2.
Nature ; 586(7828): 248-256, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028999

RESUMO

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Assuntos
Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Agricultura , Atmosfera/química , Produtos Agrícolas/metabolismo , Atividades Humanas , Internacionalidade , Nitrogênio/análise , Nitrogênio/metabolismo
3.
Environ Sci Technol ; 58(22): 9701-9713, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780660

RESUMO

Indirect nitrous oxide (N2O) emissions from streams and rivers are a poorly constrained term in the global N2O budget. Current models of riverine N2O emissions place a strong focus on denitrification in groundwater and riverine environments as a dominant source of riverine N2O, but do not explicitly consider direct N2O input from terrestrial ecosystems. Here, we combine N2O isotope measurements and spatial stream network modeling to show that terrestrial-aquatic interactions, driven by changing hydrologic connectivity, control the sources and dynamics of riverine N2O in a mesoscale river network within the U.S. Corn Belt. We find that N2O produced from nitrification constituted a substantial fraction (i.e., >30%) of riverine N2O across the entire river network. The delivery of soil-produced N2O to streams was identified as a key mechanism for the high nitrification contribution and potentially accounted for more than 40% of the total riverine emission. This revealed large terrestrial N2O input implies an important climate-N2O feedback mechanism that may enhance riverine N2O emissions under a wetter and warmer climate. Inadequate representation of hydrologic connectivity in observations and modeling of riverine N2O emissions may result in significant underestimations.


Assuntos
Hidrologia , Óxido Nitroso , Rios , Rios/química , Água Subterrânea/química , Ecossistema , Nitrificação , Solo/química , Monitoramento Ambiental
4.
Agric For Meteorol ; 2962021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33692602

RESUMO

Eddy covariance (EC) measurements of ecosystem-atmosphere carbon dioxide (CO2) exchange provide the most direct assessment of the terrestrial carbon cycle. Measurement biases for open-path (OP) CO2 concentration and flux measurements have been reported for over 30 years, but their origin and appropriate correction approach remain unresolved. Here, we quantify the impacts of OP biases on carbon and radiative forcing budgets for a sub-boreal wetland. Comparison with a reference closed-path (CP) system indicates that a systematic OP flux bias (0.54 µmol m-2 s-1) persists for all seasons leading to a 110% overestimate of the ecosystem CO2 sink (cumulative error of 78 gC m-2). Two potential OP bias sources are considered: Sensor-path heat exchange (SPHE) and analyzer temperature sensitivity. We examined potential OP correction approaches including: i) Fast temperature measurements within the measurement path and sensor surfaces; ii) Previously published parameterizations; and iii) Optimization algorithms. The measurements revealed year-round average temperature and heat flux gradients of 2.9 °C and 16 W m-2 between the bottom sensor surfaces and atmosphere, indicating SPHE-induced OP bias. However, measured SPHE correlated poorly with the observed differences between OP and CP CO2 fluxes. While previously proposed nominally universal corrections for SPHE reduced the cumulative OP bias, they led to either systematic under-correction (by 38.1 gC m-2) or to systematic over-correction (by 17-37 gC m-2). The resulting budget errors exceeded CP random uncertainty and change the sign of the overall carbon and radiative forcing budgets. Analysis of OP calibration residuals as a function of temperature revealed a sensitivity of 5 µmol m-3 K-1. This temperature sensitivity causes CO2 calibration errors proportional to sample air fluctuations that can offset the observed growing season flux bias by 50%. Consequently, we call for a new OP correction framework that characterizes SPHE- and temperature-induced CO2 measurement errors.

5.
Geophys Res Lett ; 47(17)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-33612875

RESUMO

Peatlands are among the largest natural sources of atmospheric methane (CH4) worldwide. Peatland emissions are projected to increase under climate change, as rising temperatures and shifting precipitation accelerate microbial metabolic pathways favorable for CH4 production. However, how these changing environmental factors will impact peatland emissions over the long term remains unknown. Here, we investigate a novel data set spanning an exceptionally long 11 years to analyze the influence of soil temperature and water table elevation on peatland CH4 emissions. We show that higher water tables dampen the springtime increases in CH4 emissions as well as their subsequent decreases during late summer to fall. These results imply that any hydroclimatological changes in northern peatlands that shift seasonal water availability from winter to summer will increase annual CH4 emissions, even if temperature remains unchanged. Therefore, advancing hydrological understanding in peatland watersheds will be crucial for improving predictions of CH4 emissions.

6.
Proc Natl Acad Sci U S A ; 114(16): 4177-4182, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373560

RESUMO

Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains.


Assuntos
Ecossistema , Nitrogênio/química , Fósforo/química , Poluentes Químicos da Água/química , Poluição da Água , Monitoramento Ambiental , Água Subterrânea , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
7.
Proc Natl Acad Sci U S A ; 114(45): 12081-12085, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078277

RESUMO

Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt-one of the most intensive agricultural regions of the world-combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-N⋅y-1 to 585 Gg N2O-N⋅y-1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-N⋅y-1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals.

8.
Geophys Res Lett ; 46(5): 2940-2948, 2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31068737

RESUMO

Formic acid (HCOOH) is among the most abundant carboxylic acids in the atmosphere, but its budget is poorly understood. We present eddy flux, vertical gradient, and soil chamber measurements from a mixed forest and apply the data to better constrain HCOOH source/sink pathways. While the cumulative above-canopy flux was downward, HCOOH exchange was bidirectional, with extended periods of net upward and downward flux. Net above-canopy fluxes were mostly upward during warmer/drier periods. The implied gross canopy HCOOH source corresponds to 3% and 38% of observed isoprene and monoterpene carbon emissions and is 15× underestimated in a state-of-science atmospheric model (GEOS-Chem). Gradient and soil chamber measurements identify the canopy layer as the controlling source of HCOOH or its precursors to the forest environment; below-canopy sources were minor. A correlation analysis using an ensemble of marker volatile organic compounds suggests that secondary formation, not direct emission, is the major source driving ambient HCOOH.

9.
Agric For Meteorol ; 2782019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33612901

RESUMO

Wetlands represent the dominant natural source of methane (CH4) to the atmosphere. Thus, substantial effort has been spent examining the CH4 budgets of global wetlands via continuous ecosystem-scale measurements using the eddy covariance (EC) technique. Robust error characterization for such measurements, however, remains a major challenge. Here, we quantify systematic, random and gap-filling errors and the resulting uncertainty in CH4 fluxes using a 3.5 year time series of simultaneous open- and closed path CH4 flux measurements over a sub-boreal wetland. After correcting for high- and low frequency flux attenuation, the magnitude of systematic frequency response errors were negligible relative to other uncertainties. Based on three different random flux error estimations, we found that errors of the CH4 flux measurement systems were smaller in magnitude than errors associated with the turbulent transport and flux footprint heterogeneity. Errors on individual half-hourly CH4 fluxes were typically 6%-41%, but not normally distributed (leptokurtic), and thus need to be appropriately characterized when fluxes are compared to chamber-derived or modeled CH4 fluxes. Integrated annual fluxes were only moderately sensitive to gap-filling, based on an evaluation of 4 different methods. Calculated budgets agreed on average to within 7% (≤ 1.5 g - CH4 m-2 yr-1). Marginal distribution sampling using open source code was among the best-performing of all the evaluated gap-filling approaches and it is therefore recommended given its transparency and reproducibility. Overall, estimates of annual CH4 emissions for both EC systems were in excellent agreement (within 0.6 g - CH4 m-2 yr-1) and averaged 18 g - CH4 m-2 yr-1. Total uncertainties on the annual fluxes were larger than the uncertainty of the flux measurement systems and estimated between 7-17%. Identifying trends and differences among sites or site years requires that the observed variability exceeds these uncertainties.

10.
Environ Sci Technol ; 51(21): 12707-12716, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28898072

RESUMO

Modifying urban form may be a strategy to mitigate urban air pollution. For example, evidence suggests that urban form can affect motor vehicle usage, a major contributor to urban air pollution. We use satellite-based measurements of urban form and nitrogen dioxide (NO2) to explore relationships between urban form and air pollution for a global data  set of 1274 cities. Three of the urban form metrics studied (contiguity, circularity, and vegetation) have a statistically significant relationship with urban NO2; their combined effect could be substantial. As illustration, if findings presented here are causal, that would suggest that if Christchurch, New Zealand (a city at the 75th percentile for all three urban-form metrics, and with a network of buses, trams, and bicycle facilities) was transformed to match the urban form of Indio - Cathedral City, California, United States (a city at the 25th percentile for those same metrics, and exhibiting sprawl-like suburban development), our models suggest that Christchurch's NO2 concentrations would be ∼60% higher than its current level. We also find that the combined effect of urban form on NO2 is larger for small cities (ß × IQR = -0.46 for cities < ∼300 000 people, versus -0.22 for all cities), an important finding given that cities less than 500 000 people contain a majority of the urban population and are where much of the future urban growth is expected to occur. This work highlights the need for future study of how changes in urban form and related land use and transportation policies impact urban air pollution, especially for small cities.


Assuntos
Poluentes Atmosféricos , Cidades , Poluição do Ar , California , Nova Zelândia , Dióxido de Nitrogênio
11.
Environ Sci Technol ; 51(10): 5650-5657, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28441488

RESUMO

Formaldehyde (HCHO) is the most important carcinogen in outdoor air among the 187 hazardous air pollutants (HAPs) identified by the U.S. Environmental Protection Agency (EPA), not including ozone and particulate matter. However, surface observations of HCHO are sparse and the EPA monitoring network could be prone to positive interferences. Here we use 2005-2016 summertime HCHO column data from the OMI satellite instrument, validated with high-quality aircraft data and oversampled on a 5 × 5 km2 grid, to map surface air HCHO concentrations across the contiguous U.S. OMI-derived summertime HCHO values are converted to annual averages using the GEOS-Chem chemical transport model. Results are in good agreement with high-quality summertime observations from urban sites (-2% bias, r = 0.95) but a factor of 1.9 lower than annual means from the EPA network. We thus estimate that up to 6600-12 500 people in the U.S. will develop cancer over their lifetimes by exposure to outdoor HCHO. The main HCHO source in the U.S. is atmospheric oxidation of biogenic isoprene, but the corresponding HCHO yield decreases as the concentration of nitrogen oxides (NOx ≡ NO + NO2) decreases. A GEOS-Chem sensitivity simulation indicates that HCHO levels would decrease by 20-30% in the absence of U.S. anthropogenic NOx emissions. Thus, NOx emission controls to improve ozone air quality have a significant cobenefit in reducing HCHO-related cancer risks.


Assuntos
Poluentes Atmosféricos/análise , Formaldeído/análise , Monitoramento Ambiental , Humanos , Neoplasias/epidemiologia , Material Particulado , Tecnologia de Sensoriamento Remoto , Risco , Estados Unidos/epidemiologia
12.
Environ Sci Technol ; 51(11): 5941-5950, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28468492

RESUMO

The Salt Lake Valley experiences severe fine particulate matter pollution episodes in winter during persistent cold-air pools (PCAPs). We employ measurements throughout an entire winter from different elevations to examine the chemical and dynamical processes driving these episodes. Whereas primary pollutants such as NOx and CO were enhanced twofold during PCAPs, O3 concentrations were approximately threefold lower. Atmospheric composition varies strongly with altitude within a PCAP at night with lower NOx and higher oxidants (O3) and oxidized reactive nitrogen (N2O5) aloft. We present observations of N2O5 during PCAPs that provide evidence for its role in cold-pool nitrate formation. Our observations suggest that nighttime and early morning chemistry in the upper levels of a PCAP plays an important role in aerosol nitrate formation. Subsequent daytime mixing enhances surface PM2.5 by dispersing the aerosol throughout the PCAP. As pollutants accumulate and deplete oxidants, nitrate chemistry becomes less active during the later stages of the pollution episodes. This leads to distinct stages of PM2.5 pollution episodes, starting with a period of PM2.5 buildup and followed by a period with plateauing concentrations. We discuss the implications of these findings for mitigation strategies.


Assuntos
Poluentes Atmosféricos , Material Particulado , Temperatura Baixa , Monitoramento Ambiental , Lagos , Utah
13.
Environ Sci Technol ; 50(8): 4335-42, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27010702

RESUMO

Isoprene is the predominant non-methane volatile organic compound emitted to the atmosphere and shapes tropospheric composition and biogeochemistry through its effects on ozone, other oxidants, aerosols, and the nitrogen cycle. Isoprene is emitted naturally by vegetation during daytime, when its photo-oxidation is rapid, and in the presence of nitrogen oxides (NOx) produces ozone and degrades air quality in polluted regions. Here, we show for a city downwind of an isoprene-emitting forest (St. Louis, MO) that isoprene actually peaks at night; ambient levels then endure, owing to low nighttime OH radical concentrations. Nocturnal chemistry controls the fate of that isoprene and the likelihood of a high-ozone episode the following day. When nitrate (NO3) radicals are suppressed, high isoprene persists through the night, providing photochemical fuel upon daybreak and leading to a dramatic late-morning ozone peak. On nights with significant NO3, isoprene is removed before dawn; days with low morning isoprene then have lower ozone with a more typical afternoon peak. This biogenic-anthropogenic coupling expands the daily high-ozone window and likely has an opposite O3-NOx response to what would otherwise be expected, with implications for exposure and air-quality management in cities that, like St. Louis, are downwind of major isoprene-emitting forests.


Assuntos
Poluentes Atmosféricos/química , Ar , Butadienos/química , Florestas , Hemiterpenos/química , Ozônio/química , Pentanos/química , Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera/química , Butadienos/análise , Cidades , Hemiterpenos/análise , Illinois , Nitratos/química , Óxidos de Nitrogênio/análise , Ozônio/análise , Pentanos/análise , Compostos Orgânicos Voláteis , Vento
14.
Environ Sci Technol ; 49(20): 12297-305, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26397123

RESUMO

Land-use regression (LUR) is widely used for estimating within-urban variability in air pollution. While LUR has recently been extended to national and continental scales, these models are typically for long-term averages. Here we present NO2 surfaces for the continental United States with excellent spatial resolution (∼100 m) and monthly average concentrations for one decade. We investigate multiple potential data sources (e.g., satellite column and surface estimates, high- and standard-resolution satellite data, and a mechanistic model [WRF-Chem]), approaches to model building (e.g., one model for the whole country versus having separate models for urban and rural areas, monthly LURs versus temporal scaling of a spatial LUR), and spatial interpolation methods for temporal scaling factors (e.g., kriging versus inverse distance weighted). Our core approach uses NO2 measurements from U.S. EPA monitors (2000-2010) to build a spatial LUR and to calculate spatially varying temporal scaling factors. The model captures 82% of the spatial and 76% of the temporal variability (population-weighted average) of monthly mean NO2 concentrations from U.S. EPA monitors with low average bias (21%) and error (2.4 ppb). Model performance in absolute terms is similar near versus far from monitors, and in urban, suburban, and rural locations (mean absolute error 2-3 ppb); since low-density locations generally experience lower concentrations, model performance in relative terms is better near monitors than far from monitors (mean bias 3% versus 40%) and is better for urban and suburban locations (1-6%) than for rural locations (78%, reflecting the relatively clean conditions in many rural areas). During 2000-2010, population-weighted mean NO2 exposure decreased 42% (1.0 ppb [∼5.2%] per year), from 23.2 ppb (year 2000) to 13.5 ppb (year 2010). We apply our approach to all U.S. Census blocks in the contiguous United States to provide 132 months of publicly available, high-resolution NO2 concentration estimates.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Dióxido de Nitrogênio/análise , Comunicações Via Satélite , Análise Espaço-Temporal , Poluição do Ar/análise , Modelos Teóricos , Método de Monte Carlo , Análise de Regressão , Propriedades de Superfície , Fatores de Tempo , Estados Unidos
15.
Sci Adv ; 10(20): eadn1115, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748807

RESUMO

The hydroxyl radical (OH) is the central oxidant in Earth's troposphere, but its temporal variability is poorly understood. We combine 2012-2020 satellite-based isoprene and formaldehyde measurements to identify coherent OH changes over temperate and tropical forests with attribution to emission trends, biotic stressors, and climate. We identify a multiyear OH decrease over the Southeast United States and show that with increasingly hot/dry summers the regional chemistry could become even less oxidizing depending on competing temperature/drought impacts on isoprene. Furthermore, while global mean OH decreases during El Niño, we show that near-field effects over tropical rainforests can alternate between high/low OH anomalies due to opposing fire and biogenic emission impacts. Results provide insights into how atmospheric oxidation will evolve with changing emissions and climate.

16.
Environ Sci Technol ; 47(15): 8316-24, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23844675

RESUMO

We interpret a full year of high-frequency CO measurements from a tall tower in the U.S. Upper Midwest with a time-reversed Lagrangian Particle Dispersion Model (STILT LPDM) and an Eulerian chemical transport model (GEOS-Chem CTM) to develop top-down constraints on U.S. CO sources in 2009. Our best estimate is that anthropogenic CO emissions in the U.S. Upper Midwest in 2009 were 2.9 Tg, 61% lower (a posteriori scale factor of 0.39) than our a priori prediction based on the U.S. EPA's National Emission Inventory for 2005 (NEI 2005). If the same bias applies across the contiguous U.S., the inferred CO emissions are 26 Tg/y, compared to the a priori estimate of 66 Tg/y. This discrepancy is significantly greater than would be expected based solely on emission decreases between 2005 and 2009 (EPA estimate: 23% decrease). Model transport error is an important source of uncertainty in the analysis, and we employ an ensemble of sensitivity runs using multiple meteorological data sets and model configurations to assess its impact on our results. A posteriori scale factors for the U.S. anthropogenic CO source from these sensitivity runs range from 0.22 to 0.64, corresponding to emissions of 1.6-4.8 Tg/y for the U.S. Upper Midwest and 15-42 Tg/y for the contiguous U.S. The data have limited sensitivity for constraining biomass + biofuel burning emissions and photochemical CO production from precursor organic compounds. Our finding of a NEI 2005 overestimate of CO emissions is consistent with recent assessments for individual cities and with earlier analyses based on the NEI 1999, implying the need for a better mechanism for refining such bottom-up emission estimates in response to top-down constraints.


Assuntos
Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Teorema de Bayes , Biomassa , Meio-Oeste dos Estados Unidos
17.
Environ Sci Technol ; 47(23): 13555-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24156783

RESUMO

Land use regression (LUR) models typically investigate within-urban variability in air pollution. Recent improvements in data quality and availability, including satellite-derived pollutant measurements, support fine-scale LUR modeling for larger areas. Here, we describe NO2 and PM10 LUR models for Western Europe (years: 2005-2007) based on >1500 EuroAirnet monitoring sites covering background, industrial, and traffic environments. Predictor variables include land use characteristics, population density, and length of major and minor roads in zones from 0.1 km to 10 km, altitude, and distance to sea. We explore models with and without satellite-based NO2 and PM2.5 as predictor variables, and we compare two available land cover data sets (global; European). Model performance (adjusted R(2)) is 0.48-0.58 for NO2 and 0.22-0.50 for PM10. Inclusion of satellite data improved model performance (adjusted R(2)) by, on average, 0.05 for NO2 and 0.11 for PM10. Models were applied on a 100 m grid across Western Europe; to support future research, these data sets are publicly available.


Assuntos
Poluição do Ar/análise , Modelos Teóricos , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Altitude , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Material Particulado/análise , Imagens de Satélites
18.
Environ Sci Technol Lett ; 10(10): 844-850, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37840817

RESUMO

Schools may have important impacts on children's exposure to ambient air pollution, yet ambient air quality at schools is not consistently tracked. We characterize ambient air quality at home and school locations in the United States using satellite-based empirical model (i.e., land use regression) estimates of outdoor annual nitrogen dioxide (NO2). We report disparities by race-ethnicity and impoverishment status, and investigate differences by level of urbanicity. Average NO2 levels at home and school for racial-ethnic minoritized students are 18-22% higher than average (and 37-39% higher than for non-Hispanic, white students). Minoritized students are less likely than their white peers to live (0.55 times) and attend school (0.58 times) in areas below the World Health Organization's NO2 guideline. Predominantly minoritized schools (i.e., >50% minoritized students) are less likely than predominantly white schools (0.43 times) to be in locations below the guideline. Income and race-ethnicity impacts are intertwined, yet in large cities, racial disparities persist after controlling for income.

19.
Environ Sci Technol ; 46(15): 8484-92, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22731385

RESUMO

We used an ensemble of aircraft measurements with the GEOS-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long-range impacts of increased ethanol fuel use. We find that current ethanol emissions are underestimated by 50% in Western North America, and overestimated by a factor of 2 in the east. Our best estimate for year-2005 North American ethanol emissions is 670 GgC/y, with 440 GgC/y from the continental U.S. We apply these optimized source estimates to investigate two scenarios for increased ethanol fuel use in the U.S.: one that assumes a complete transition from gasoline to E85 fuel, and one tied to the biofuel requirements of the U.S. Energy Indepence and Security Act (EISA). For both scenarios, increased ethanol emissions lead to higher atmospheric acetaldehyde concentrations (by up to 14% during winter for the All-E85 scenario and 2% for the EISA scenario) and an associated shift in reactive nitrogen partitioning reflected by an increase in the peroxyacetyl nitrate (PAN) to NO(y) ratio. The largest relative impacts occur during fall, winter, and spring because of large natural emissions of ethanol and other organic compounds during summer. Projected changes in atmospheric PAN reflect a balance between an increased supply of peroxyacetyl radicals from acetaldehyde oxidation, and the lower NO(x) emissions for E85 relative to gasoline vehicles. The net effect is a general PAN increase in fall through spring, and a weak decrease over the U.S. Southeast and the Atlantic Ocean during summer. Predicted NO(x) concentrations decrease in surface air over North America (by as much 5% in the All-E85 scenario). Downwind of North America this effect is counteracted by higher NO(x) export efficiency driven by increased PAN production and transport. From the point of view of NO(x) export from North America, the increased PAN formation associated with E85 fuel use thus acts to offset the associated lower NO(x) emissions.


Assuntos
Atmosfera , Etanol/química , Aeronaves , América do Norte , Incerteza
20.
PLoS One ; 17(5): e0268714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613109

RESUMO

Each year, millions of premature deaths worldwide are caused by exposure to outdoor air pollution, especially fine particulate matter (PM2.5). Designing policies to reduce these deaths relies on air quality modeling for estimating changes in PM2.5 concentrations from many scenarios at high spatial resolution. However, air quality modeling typically has substantial requirements for computation and expertise, which limits policy design, especially in countries where most PM2.5-related deaths occur. Lower requirement reduced-complexity models exist but are generally unavailable worldwide. Here, we adapt InMAP, a reduced-complexity model originally developed for the United States, to simulate annual-average primary and secondary PM2.5 concentrations across a global-through-urban spatial domain: "Global InMAP". Global InMAP uses a variable resolution grid, with horizontal grid cell widths ranging from 500 km in remote locations to 4km in urban locations. We evaluate Global InMAP performance against both measurements and a state-of-the-science chemical transport model, GEOS-Chem. Against measurements, InMAP predicts total PM2.5 concentrations with a normalized mean error of 62%, compared to 41% for GEOS-Chem. For the emission scenarios considered, Global InMAP reproduced GEOS-Chem pollutant concentrations with a normalized mean bias of 59%-121%, which is sufficient for initial policy assessment and scoping. Global InMAP can be run on a desktop computer; simulations here took 2.6-8.4 hours. This work presents a global, open-source, reduced-complexity air quality model to facilitate policy assessment worldwide, providing a screening tool for reducing air pollution-related deaths where they occur most.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Mortalidade Prematura , Material Particulado/análise , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA