RESUMO
The v' = 0 progressions of the C --> X and A --> X band systems of nitric oxide dominate the middle-UV spectrum of the night-time upper atmospheres of the Earth, Mars, and Venus. The C(0) --> A(0)+h nu radiative transition at 1.224 mum, the only channel effectively populating the A(0) level, must therefore occur also. There have been, however, no reported detections of the C(0) --> A(0) band in the atmospheres of these or any other planets. We analyzed all available near-infrared limb observations of the dark-side atmosphere of Venus by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument on the Venus Express spacecraft and found 2 unambiguous detections of this band at equatorial latitudes that seem to be associated with episodic events of highly enhanced nightglow emission. The discovery of the C(0) --> A(0) band means observations in the 1.2-1.3 microm region, which also contains the a(0) --> X(0) emission band of molecular oxygen, can provide a wealth of information on the high-altitude chemistry and dynamics of the Venusian atmosphere.
RESUMO
The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause.
RESUMO
A compact, high-resolution Fourier-transform spectrometer for atmospheric near-ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4 degrees N, 117.7 degrees W, elevation 2290 m). This instrument is designed with an unapodized resolving power near 500,000 at 300 nm to provide high-resolution spectra from 290 to 675 nm for the quantification of column abundances of trace atmospheric species. The measurement technique used is spectral analysis of molecular absorptions of solar radiation. The instrument, accompanying systems designs, and results of the atmospheric hydroxyl column observations are described.