Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Nature ; 608(7922): 360-367, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948708

RESUMO

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.


Assuntos
Células Clonais , Variações do Número de Cópias de DNA , Instabilidade Genômica , Neoplasias , Análise Espacial , Células Clonais/metabolismo , Células Clonais/patologia , Variações do Número de Cópias de DNA/genética , Detecção Precoce de Câncer , Genoma Humano , Instabilidade Genômica/genética , Genômica , Humanos , Masculino , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma/genética
2.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770683

RESUMO

Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.


Assuntos
Carcinogênese , Membrana Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endocitose , Transporte Proteico , Complexo de Golgi/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(49): e2312261120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011568

RESUMO

While radical prostatectomy remains the mainstay of prostate cancer (PCa) treatment, 20 to 40% of patients develop postsurgical biochemical recurrence (BCR). A particularly challenging clinical cohort includes patients with intermediate-risk disease whose risk stratification would benefit from advanced approaches that complement standard-of-care diagnostic tools. Here, we show that imaging tumor lactate using hyperpolarized 13C MRI and spatial metabolomics identifies BCR-positive patients in two prospective intermediate-risk surgical cohorts. Supported by spatially resolved tissue analysis of established glycolytic biomarkers, this study provides the rationale for multicenter trials of tumor metabolic imaging as an auxiliary tool to support PCa treatment decision-making.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico/análise , Ácido Láctico , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Próstata/patologia , Prostatectomia/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos
4.
FASEB J ; 38(8): e23628, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661032

RESUMO

Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in cancer cells. In MYC over-expressing prostate cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate cancer, a currently lethal disease.


Assuntos
Quinase 9 Dependente de Ciclina , Imunidade Inata , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo
5.
Int J Cancer ; 154(5): 926-939, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37767987

RESUMO

Magnetic resonance imaging (MRI) is increasingly used to triage patients for prostate biopsy. However, 9% to 24% of clinically significant (cs) prostate cancers (PCas) are not visible in MRI. We aimed to identify histomic and transcriptomic determinants of MRI visibility and their association to metastasis, and PCa-specific death (PCSD). We studied 45 radical prostatectomy-treated patients with csPCa (grade group [GG]2-3), including 30 with MRI-visible and 15 with MRI-invisible lesions, and 18 men without PCa. First, histological composition was quantified. Next, transcriptomic profiling was performed using NanoString technology. MRI visibility-associated differentially expressed genes (DEGs) and Reactome pathways were identified. MRI visibility was classified using publicly available genes in MSK-IMPACT and Decipher, Oncotype DX, and Prolaris. Finally, DEGs and clinical parameters were used to classify metastasis and PCSD in an external cohort, which included 76 patients with metastatic GG2-4 PCa, and 84 baseline-matched controls without progression. Luminal area was lower in MRI-visible than invisible lesions and low luminal area was associated with short metastasis-free and PCa-specific survival. We identified 67 DEGs, eight of which were associated with survival. Cell division, inflammation and transcriptional regulation pathways were upregulated in MRI-visible csPCas. Genes in Decipher, Oncotype DX and MSK-IMPACT performed well in classifying MRI visibility (AUC = 0.86-0.94). DEGs improved classification of metastasis (AUC = 0.69) and PCSD (AUC = 0.68) over clinical parameters. Our data reveals that MRI-visible csPCas harbor more aggressive histomic and transcriptomic features than MRI-invisible csPCas. Thus, targeted biopsy of visible lesions may be sufficient for risk stratification in patients with a positive MRI.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Prognóstico , Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Perfilação da Expressão Gênica , Estudos Retrospectivos
6.
Prostate ; 84(10): 977-990, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654435

RESUMO

BACKGROUND: It is important to identify molecular features that improve prostate cancer (PCa) risk stratification before radical treatment with curative intent. Molecular analysis of historical diagnostic formalin-fixed paraffin-embedded (FFPE) prostate biopsies from cohorts with post-radiotherapy (RT) long-term clinical follow-up has been limited. Utilizing parallel sequencing modalities, we performed a proof-of-principle sequencing analysis of historical diagnostic FFPE prostate biopsies. We compared patients with (i) stable PCa (sPCa) postprimary or salvage RT, (ii) progressing PCa (pPCa) post-RT, and (iii) de novo metastatic PCa (mPCa). METHODS: A cohort of 19 patients with diagnostic prostate biopsies (n = 6 sPCa, n = 5 pPCa, n = 8 mPCa) and mean 4 years 10 months follow-up (diagnosed 2009-2016) underwent nucleic acid extraction from demarcated malignancy. Samples underwent 3'RNA sequencing (3'RNAseq) (n = 19), nanoString analysis (n = 12), and Illumina 850k methylation (n = 8) sequencing. Bioinformatic analysis was performed to coherently identify differentially expressed genes and methylated genomic regions (MGRs). RESULTS: Eighteen of 19 samples provided useable 3'RNAseq data. Principal component analysis (PCA) demonstrated similar expression profiles between pPCa and mPCa cases, versus sPCa. Coherently differentially methylated probes between these groups identified ~600 differentially MGRs. The top 50 genes with increased expression in pPCa patients were associated with reduced progression-free survival post-RT (p < 0.0001) in an external cohort. CONCLUSIONS: 3'RNAseq, nanoString and 850k-methylation analyses are each achievable from historical FFPE diagnostic pretreatment prostate biopsies, unlocking the potential to utilize large cohorts of historic clinical samples. Profiling similarities between individuals with pPCa and mPCa suggests biological similarities and historical radiological staging limitations, which warrant further investigation.


Assuntos
Progressão da Doença , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Idoso , Pessoa de Meia-Idade , Biópsia , Genômica , Próstata/patologia , Metástase Neoplásica , Estudos de Coortes
7.
Br J Cancer ; 130(5): 741-754, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216720

RESUMO

BACKGROUND: Peroxisomes are central metabolic organelles that have key roles in fatty acid homoeostasis. As prostate cancer (PCa) is particularly reliant on fatty acid metabolism, we explored the contribution of peroxisomal ß-oxidation (perFAO) to PCa viability and therapy response. METHODS: Bioinformatic analysis was performed on clinical transcriptomic datasets to identify the perFAO enzyme, 2,4-dienoyl CoA reductase 2 (DECR2) as a target gene of interest. Impact of DECR2 and perFAO inhibition via thioridazine was examined in vitro, in vivo, and in clinical prostate tumours cultured ex vivo. Transcriptomic and lipidomic profiling was used to determine the functional consequences of DECR2 inhibition in PCa. RESULTS: DECR2 is upregulated in clinical PCa, most notably in metastatic castrate-resistant PCa (CRPC). Depletion of DECR2 significantly suppressed proliferation, migration, and 3D growth of a range of CRPC and therapy-resistant PCa cell lines, and inhibited LNCaP tumour growth and proliferation in vivo. DECR2 influences cell cycle progression and lipid metabolism to support tumour cell proliferation. Further, co-targeting of perFAO and standard-of-care androgen receptor inhibition enhanced suppression of PCa cell proliferation. CONCLUSION: Our findings support a focus on perFAO, specifically DECR2, as a promising therapeutic target for CRPC and as a novel strategy to overcome lethal treatment resistance.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Metabolismo dos Lipídeos/genética , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Proliferação de Células , Ácidos Graxos
8.
World J Urol ; 42(1): 95, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386171

RESUMO

PURPOSE: The primary objective was to establish whether blood-based leucine-rich alpha-2-glycoprotein (LRG1) can predict outcomes in patients with locally advanced prostate cancer undergoing androgen-deprivation therapy (ADT) and radiotherapy (RT) and to determine how it may relate to 92 immune-oncology (I-O)-related proteins in this setting. METHODS: Baseline blood level of LRG1 from patients treated with ADT and RT enrolled in the CuPCa (n = 128) and IMRT (n = 81) studies was measured using ELISA. A longitudinal cohort with matched blood samples from start of ADT, start of RT, and end of RT protocol from 47 patients from the IMRT cohort was used to establish levels of I-O proteins by high-multiplexing Proximal Extension Assay by Olink Proteomics. Statistical analyses using Kaplan-Meier, Cox regression, and LIMMA analyses were applied to predict the prognostic value of LRG1 and its correlation to I-O proteins. RESULTS: High baseline levels of LRG1 predicted a low frequency of treatment failure in patients undergoing ADT + RT in both the CuPCa and the IMRT cohorts. LRG1 was moderately correlated with CD4, IL6, and CSF1. We identified I-O proteins predicting metastatic failure (MF) at different timepoints. CONCLUSION: LRG1 biomarker is associated with I-O proteins and can be used to improve stratification and monitoring of prostate cancer patients undergoing ADT + RT. This work will require further in-depth analyses in independent cohorts with treatment outcome data.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Antagonistas de Androgênios/uso terapêutico , Androgênios , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Oncologia
9.
Mol Cancer ; 22(1): 162, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789377

RESUMO

Genetic signatures have added a molecular dimension to prognostics and therapeutic decision-making. However, tumour heterogeneity in prostate cancer and current sampling methods could confound accurate assessment. Based on previously published spatial transcriptomic data from multifocal prostate cancer, we created virtual biopsy models that mimic conventional biopsy placement and core size. We then analysed the gene expression of different prognostic signatures (OncotypeDx®, Decipher®, Prostadiag®) using a step-wise approach with increasing resolution from pseudo-bulk analysis of the whole biopsy, to differentiation by tissue subtype (benign, stroma, tumour), followed by distinct tumour grade and finally clonal resolution. The gene expression profile of virtual tumour biopsies revealed clear differences between grade groups and tumour clones, compared to a benign control, which were not reflected in bulk analyses. This suggests that bulk analyses of whole biopsies or tumour-only areas, as used in clinical practice, may provide an inaccurate assessment of gene profiles. The type of tissue, the grade of the tumour and the clonal composition all influence the gene expression in a biopsy. Clinical decision making based on biopsy genomics should be made with caution while we await more precise targeting and cost-effective spatial analyses.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Transcriptoma , Biópsia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Genômica
10.
Biochem Soc Trans ; 51(1): 331-342, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36815702

RESUMO

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.


Assuntos
Cálcio , Proteínas Serina-Treonina Quinases , Humanos , Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/fisiologia , Proliferação de Células , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo
11.
BJU Int ; 132(5): 472-484, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37410655

RESUMO

OBJECTIVE: To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS: A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS: The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS: Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.

12.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628903

RESUMO

Prostate cancer is typically of acinar adenocarcinoma type but can occasionally present as neuroendocrine and/or ductal type carcinoma. These are associated with clinically aggressive disease, and the former often arises on a background of androgen deprivation therapy, although it can also arise de novo. Two prostate cancer cases were sequenced by exome capture from archival tissue. Case 1 was de novo small cell neuroendocrine carcinoma and ductal adenocarcinoma with three longitudinal samples over 5 years. Case 2 was a single time point after the development of treatment-related neuroendocrine prostate carcinoma. Case 1 showed whole genome doubling in all samples and focal amplification of AR in all samples except the first time point. Phylogenetic analysis revealed a common ancestry for ductal and small cell carcinoma. Case 2 showed 13q loss (involving RB1) in both adenocarcinoma and small cell carcinoma regions, and 3p gain, 4p loss, and 17p loss (involving TP53) in the latter. By using highly curated samples, we demonstrate for the first time that small-cell neuroendocrine and ductal prostatic carcinoma can have a common ancestry. We highlight whole genome doubling in a patient with prostate cancer relapse, reinforcing its poor prognostic nature.


Assuntos
Carcinoma de Células Acinares , Carcinoma Ductal , Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias da Próstata/genética , Antagonistas de Androgênios , Filogenia , Carcinoma Ductal/genética , Evolução Molecular
13.
Glycobiology ; 32(9): 751-759, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35708495

RESUMO

Co-targeting of O-GlcNAc transferase (OGT) and the transcriptional kinase cyclin-dependent kinase 9 (CDK9) is toxic to prostate cancer cells. As OGT is an essential glycosyltransferase, identifying an alternative target showing similar effects is of great interest. Here, we used a multiomics approach (transcriptomics, metabolomics, and proteomics) to better understand the mechanistic basis of the combinatorial lethality between OGT and CDK9 inhibition. CDK9 inhibition preferentially affected transcription. In contrast, depletion of OGT activity predominantly remodeled the metabolome. Using an unbiased systems biology approach (weighted gene correlation network analysis), we discovered that CDK9 inhibition alters mitochondrial activity/flux, and high OGT activity is essential to maintain mitochondrial respiration when CDK9 activity is depleted. Our metabolite profiling data revealed that pantothenic acid (vitamin B5) is the metabolite that is most robustly induced by both OGT and OGT+CDK9 inhibitor treatments but not by CDK9 inhibition alone. Finally, supplementing prostate cancer cell lines with vitamin B5 in the presence of CDK9 inhibitor mimics the effects of co-targeting OGT and CDK9.


Assuntos
Quinase 9 Dependente de Ciclina , Neoplasias da Próstata , Homeostase , Humanos , Masculino , N-Acetilglucosaminiltransferases/genética , Ácido Pantotênico , Neoplasias da Próstata/metabolismo
14.
PLoS Med ; 19(1): e1003859, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085228

RESUMO

BACKGROUND: Numerous epidemiological studies have investigated the role of blood lipids in prostate cancer (PCa) risk, though findings remain inconclusive to date. The ongoing research has mainly involved observational studies, which are often prone to confounding. This study aimed to identify the relationship between genetically predicted blood lipid concentrations and PCa. METHODS AND FINDINGS: Data for low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TG), apolipoprotein A (apoA) and B (apoB), lipoprotein A (Lp(a)), and PCa were acquired from genome-wide association studies in UK Biobank and the PRACTICAL consortium, respectively. We used a two-sample summary-level Mendelian randomisation (MR) approach with both univariable and multivariable (MVMR) models and utilised a variety of robust methods and sensitivity analyses to assess the possibility of MR assumptions violation. No association was observed between genetically predicted concentrations of HDL, TG, apoA and apoB, and PCa risk. Genetically predicted LDL concentration was positively associated with total PCa in the univariable analysis, but adjustment for HDL, TG, and Lp(a) led to a null association. Genetically predicted concentration of Lp(a) was associated with higher total PCa risk in the univariable (ORweighted median per standard deviation (SD) = 1.091; 95% CI 1.028 to 1.157; P = 0.004) and MVMR analyses after adjustment for the other lipid traits (ORIVW per SD = 1.068; 95% CI 1.005 to 1.134; P = 0.034). Genetically predicted Lp(a) was also associated with advanced (MVMR ORIVW per SD = 1.078; 95% CI 0.999 to 1.163; P = 0.055) and early age onset PCa (MVMR ORIVW per SD = 1.150; 95% CI 1.015,1.303; P = 0.028). Although multiple estimation methods were utilised to minimise the effect of pleiotropy, the presence of any unmeasured pleiotropy cannot be excluded and may limit our findings. CONCLUSIONS: We observed that genetically predicted Lp(a) concentrations were associated with an increased PCa risk. Future studies are required to understand the underlying biological pathways of this finding, as it may inform PCa prevention through Lp(a)-lowering strategies.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos/sangue , Neoplasias da Próstata/epidemiologia , Apolipoproteínas/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos , Lipoproteína(a)/sangue , Masculino , Análise da Randomização Mendeliana , Reino Unido
15.
Int J Cancer ; 148(1): 99-105, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930425

RESUMO

Polygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46) showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify single nucleotide polymorphisms (SNPs) that might improve performance in this population. Anonymized genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Ten iterations of a 10-fold cross-validation search were conducted to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African was compared using the same cross-validated approach. Three SNPs (rs76229939, rs74421890 and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located on chromosome 8q24. PHS46+African showed substantial improvements in all performance metrics measured, including a 75% increase in the relative hazard of those in the upper 20% compared to the bottom 20% (2.47-4.34) and a 20% reduction in the relative hazard of those in the bottom 20% compared to the middle 40% (0.65-0.53). In conclusion, we identified three SNPs that substantially improved the association of PHS46 with age at diagnosis of prostate cancer in men with African genetic ancestry to levels comparable to Europeans.


Assuntos
População Negra/estatística & dados numéricos , Predisposição Genética para Doença , Modelos Genéticos , Herança Multifatorial , Neoplasias da Próstata/epidemiologia , Fatores Etários , População Negra/genética , Estudos de Casos e Controles , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Modelos de Riscos Proporcionais , Neoplasias da Próstata/genética
16.
Prostate ; 81(7): 368-376, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734461

RESUMO

BACKGROUND: Improved prognostication is needed to minimize overtreatment in grade group (GG) 2-4 prostate cancer. Our aim was to determine, at messenger RNA (mRNA) level, the performance of the genes in the commercial panels Decipher, Oncotype DX, Prolaris, and mutational panel MSK-IMPACT to predict metastasis-free and prostate cancer-specific death (PCSD) in patients with GG 2-4 prostate cancer at radical prostatectomy. METHODS: The retrospective cohort consisted of GG 2-4 patients treated with radical prostatectomy (median follow-up 10.4 years). Seventy-six cases with postoperative metastasis or PCSD and 84 controls with similar clinical baseline risk, but without progression, were analyzed. Index lesion mRNA transcripts were analyzed using NanoString technology. Random forest models were trained using panel gene sets to predict clinical endpoints and area under the curve (AUC), sensitivity, specificity, Youden index, and number needed to diagnose (NND) was measured. Survival probability was assessed with Kaplan-Meier estimator. RESULTS: All gene sets outperformed clinical parameters and predicted metastasis-free and prostate cancer-specific survival. However, there were significant differences between the panels. In metastasis prediction, the genes in Oncotype DX had inferior performance (area under the curve [AUC] = 0.65) compared to other panels (AUC = 0.73-0.74). Decipher, MSK-IMPACT and Prolaris showed similar NND (2.83-3.12) with Oncotype DX having highest NND (4.79). In PCSD prediction, the Prolaris gene set performed worse (AUC = 0.66) than MSK-IMPACT or Decipher (AUC = 0.72). Oncotype DX performed similarly to other panels (AUC = 0.69, p > .05). Oncotype DX demonstrated lowest NND (2.79) compared to other panels (4.22-5.66). CONCLUSION: Transcript analysis of genes included in commercial panels is feasible in survival prediction of GG 2-4 patients after radical prostatectomy and may aid in clinical decision making. There were significant differences between the panels, and overall stronger predictive gene sets are needed. Prospective investigation is warranted in biopsy materials.


Assuntos
Próstata/patologia , Neoplasias da Próstata/genética , Idoso , Biomarcadores Tumorais , Análise Mutacional de DNA , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Medição de Risco , Taxa de Sobrevida
17.
Br J Cancer ; 125(3): 324-336, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33828258

RESUMO

A functional vascular system is indispensable for drug delivery and fundamental for responsiveness of the tumour microenvironment to such medication. At the same time, the progression of a tumour is defined by the interactions of the cancer cells with their surrounding environment, including neovessels, and the vascular network continues to be the major route for the dissemination of tumour cells in cancer, facilitating metastasis. So how can this apparent conflict be reconciled? Vessel normalisation-in which redundant structures are pruned and the abnormal vasculature is stabilised and remodelled-is generally considered to be beneficial in the course of anti-cancer treatments. A causality between normalised vasculature and improved response to medication and treatment is observed. For this reason, it is important to discern the consequence of vessel normalisation on the tumour microenvironment and to modulate the vasculature advantageously. This article will highlight the challenges of controlled neovascular remodelling and outline how vascular normalisation can shape disease management.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Progressão da Doença , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos
18.
Br J Cancer ; 125(4): 534-546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155340

RESUMO

BACKGROUND: There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS: We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS: FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION: Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.


Assuntos
Neovascularização Patológica/terapia , Fotoquimioterapia/métodos , Neoplasias da Próstata/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Fracionamento da Dose de Radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Neoplasias da Próstata/irrigação sanguínea , Análise de Sobrevida , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
RNA Biol ; 18(sup2): 722-729, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592899

RESUMO

Cyclin-dependent kinase 9 (CDK9) phosphorylates RNA polymerase II to promote productive transcription elongation. Here we show that short-term CDK9 inhibition affects the splicing of thousands of mRNAs. CDK9 inhibition impairs global splicing and there is no evidence for a coordinated response between the alternative splicing and the overall transcriptome. Alternative splicing is a feature of aggressive prostate cancer (CRPC) and enables the generation of the anti-androgen resistant version of the ligand-independent androgen receptor, AR-v7. We show that CDK9 inhibition results in the loss of AR and AR-v7 expression due to the defects in splicing, which sensitizes CRPC cells to androgen deprivation. Finally, we demonstrate that CDK9 expression increases as PC cells develop CRPC-phenotype both in vitro and also in patient samples. To conclude, here we show that CDK9 inhibition compromises splicing in PC cells, which can be capitalized on by targeting the PC-specific addiction androgen receptor.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/genética , Inibidores de Proteínas Quinases/farmacologia , Splicing de RNA , Processamento Alternativo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ativação Enzimática , Perfilação da Expressão Gênica , Humanos , Masculino , Oligonucleotídeos/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , RNA Mensageiro/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Spliceossomos/metabolismo
20.
Br J Cancer ; 123(7): 1089-1100, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641865

RESUMO

BACKGROUND: Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1. METHODS: Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated with 3 × 5 Gy ± anti-PD-L1. RESULTS: 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy. CONCLUSION: 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour response.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias da Próstata/terapia , Hipofracionamento da Dose de Radiação , Microambiente Tumoral , Animais , Antígeno B7-H1/análise , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA