RESUMO
Contagious ovine digital dermatitis (CODD) causes a severe, infectious foot disease and lameness of sheep, is common within the UK and is now also emerging in other countries. As well as causing severe animal welfare issues, huge economic losses emerge from the disease due to weight loss/lack of weight gain, and veterinary treatments. CODD lesion progress is measured, with a scoring system from 1 (early lesions) to 5 (healed). Here, using samples from an experimental flock infected by natural means, samples were taken from CODD stage 5 lesions, post treatment, and subjected to bacterial isolation and MLST using previously published methods. Sequences were compared to others from the same flock, and those from previous studies. All CODD 5 lesions produced viable Treponema spp. bacteria. High levels of variation of bacteria were seen, with 12 sequence types (STs) for T. medium phylogroup (11 new), 15 STs for T. phagedenis phylogroup (9 new) and six T. pedis STs, of which two were new. This study shows that CODD stage 5 lesions still contain viable bacteria, representing all three known pathogenic Treponema spp. phylogroups, and these may thus play a role in disease transmission and epidemiology despite appearing healed after treatment. The high level CODD treponeme variability within an infected flock where sheep were bought from different sources, as might occur in common agricultural practice, may suggest reasons as to why the bacterial disease is difficult to treat, control and eradicate, and adds further complexity to the polybacterial pathogenesis of these lesions.
Assuntos
Dermatite Digital , Tipagem de Sequências Multilocus , Doenças dos Ovinos , Treponema , Infecções por Treponema , Animais , Ovinos , Treponema/genética , Treponema/classificação , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/transmissão , Dermatite Digital/microbiologia , Dermatite Digital/transmissão , Tipagem de Sequências Multilocus/veterinária , Infecções por Treponema/veterinária , Infecções por Treponema/microbiologia , Infecções por Treponema/transmissãoRESUMO
Cell integrity MAPK (mitogen-activated protein kinase) function can be provided in yeast cells by either the native Slt2(Mpk1)p of yeast or by a heterologously expressed human ERK5 (extracellular-signal-regulated kinase 5). Both of these MAPKs need the Hsp90 (heat-shock protein 90) chaperone for their activation, so that when Hsp90 function is compromised their activities are low. This, in turn, affects the capacity of these MAPKs to control the transcription factors that regulate cell integrity genes.