Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5255, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644045

RESUMO

Here we present a technology to facilitate synthetic memory in a living system via repurposing Transcriptional Programming (i.e., our decision-making technology) parts, to regulate (intercept) recombinase function post-translation. We show that interception synthetic memory can facilitate programmable loss-of-function via site-specific deletion, programmable gain-of-function by way of site-specific inversion, and synthetic memory operations with nested Boolean logical operations. We can expand interception synthetic memory capacity more than 5-fold for a single recombinase, with reconfiguration specificity for multiple sites in parallel. Interception synthetic memory is ~10-times faster than previous generations of recombinase-based memory. We posit that the faster recombination speed of our next-generation memory technology is due to the post-translational regulation of recombinase function. This iteration of synthetic memory is complementary to decision-making via Transcriptional Programming - thus can be used to develop intelligent synthetic biological systems for myriad applications.


Assuntos
Inversão Cromossômica , Inteligência , Humanos , Nonoxinol , Recombinases/genética , Tecnologia
2.
ACS Synth Biol ; 12(4): 1094-1108, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36935615

RESUMO

Transcriptional programming leverages systems of engineered transcription factors to impart decision-making (e.g., Boolean logic) in chassis cells. The number of components used to construct said decision-making systems is rapidly increasing, making an exhaustive experimental evaluation of iterations of biological circuits impractical. Accordingly, we posited that a predictive tool is needed to guide and accelerate the design of transcriptional programs. The work described here involves the development and experimental characterization of a large collection of network-capable single-INPUT logical operations─i.e., engineered BUFFER (repressor) and engineered NOT (antirepressor) logical operations. Using this single-INPUT data and developed metrology, we were able to model and predict the performances of all fundamental two-INPUT compressed logical operations (i.e., compressed AND gates and compressed NOR gates). In addition, we were able to model and predict the performance of compressed mixed phenotype logical operations (A NIMPLY B gates and complementary B NIMPLY A gates). These results demonstrate that single-INPUT data is sufficient to accurately predict both the qualitative and quantitative performance of a complex circuit. Accordingly, this work has set the stage for the predictive design of transcriptional programs of greater complexity.


Assuntos
Lógica , Fatores de Transcrição , Fatores de Transcrição/genética
3.
Annu Rev Biophys ; 50: 303-321, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33606944

RESUMO

Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice-integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators-i.e., transcription factors and corresponding unit operations. In this review, we (a) explore allosteric communication in the lactose repressor LacI topology, (b) demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, (c) illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and (d) demonstrate how fundamental unit operations can be directed to form combinational logical operations.


Assuntos
Lactose/metabolismo , Regulação Alostérica , Redes Reguladoras de Genes , Humanos , Lactose/genética , Engenharia de Proteínas , Biologia Sintética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA