Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 629(8013): 910-918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693263

RESUMO

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.


Assuntos
Carcinoma de Células Renais , Exposição Ambiental , Geografia , Neoplasias Renais , Mutagênicos , Mutação , Feminino , Humanos , Masculino , Ácidos Aristolóquicos/efeitos adversos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/induzido quimicamente , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Genoma Humano/genética , Genômica , Hipertensão/epidemiologia , Incidência , Japão/epidemiologia , Neoplasias Renais/genética , Neoplasias Renais/epidemiologia , Neoplasias Renais/induzido quimicamente , Mutagênicos/efeitos adversos , Obesidade/epidemiologia , Fatores de Risco , Romênia/epidemiologia , Sérvia/epidemiologia , Tailândia/epidemiologia , Fumar Tabaco/efeitos adversos , Fumar Tabaco/genética
2.
Hum Mol Genet ; 30(5): 343-355, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33527138

RESUMO

Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained 2-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.


Assuntos
Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Neoplasias Renais/genética , Caracteres Sexuais , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Progressão da Doença , Feminino , Genes Supressores de Tumor , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico
3.
Virchows Arch ; 478(6): 1099-1107, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33403511

RESUMO

There are unexplained geographical variations in the incidence of kidney cancer with the high rates reported in Baltic countries, as well as eastern and central Europe. Having access to a large and well-annotated collection of "tumor/non-tumor" pairs of kidney cancer patients from the Czech Republic, Romania, Serbia, UK, and Russia, we aimed to analyze the morphology of non-neoplastic renal tissue in nephrectomy specimens. By applying digital pathology, we performed a microscopic examination of 1012 frozen non-neoplastic kidney tissues from patients with renal cell carcinoma. Four components of renal parenchyma were evaluated and scored for the intensity of interstitial inflammation and fibrosis, tubular atrophy, glomerulosclerosis, and arterial wall thickening, globally called chronic renal parenchymal changes. Moderate or severe changes were observed in 54 (5.3%) of patients with predominance of occurrence in Romania (OR = 2.67, CI 1.07-6.67) and Serbia (OR = 4.37, CI 1.20-15.96) in reference to those from Russia. Further adjustment for comorbidities, tumor characteristics, and stage did not change risk estimates. In multinomial regression model, relative probability of non-glomerular changes was 5.22 times higher for Romania and Serbia compared to Russia. Our findings show that the frequency of chronic renal parenchymal changes, with the predominance of chronic interstitial nephritis pattern, in kidney cancer patients varies by country, significantly more frequent in countries located in central and southeastern Europe where the incidence of kidney cancer has been reported to be moderate to high. The observed association between these pathological features and living in certain geographic areas requires a larger population-based study to confirm this association on a large scale.


Assuntos
Carcinoma de Células Renais/patologia , Fibrose/patologia , Neoplasias Renais/patologia , Rim/patologia , Adulto , Idoso , Europa (Continente) , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Nefrectomia/métodos , Federação Russa
4.
NAR Genom Bioinform ; 2(2): lqaa021, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32363341

RESUMO

The emergence of next-generation sequencing (NGS) has revolutionized the way of reaching a genome sequence, with the promise of potentially providing a comprehensive characterization of DNA variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when trying to identify low abundance mutations, such as subclonal mutations, tumour-derived alterations in body fluids or somatic mutations from histological normal tissue. The main challenge is to precisely distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare they reach similar abundance levels as artefacts. Here, we present needlestack, a highly sensitive variant caller, which directly learns from the data the level of systematic sequencing errors to accurately call mutations. Needlestack is based on the idea that the sequencing error rate can be dynamically estimated from analysing multiple samples together. We show that the sequencing error rate varies across alterations, illustrating the need to precisely estimate it. We evaluate the performance of needlestack for various types of variations, and we show that needlestack is robust among positions and outperforms existing state-of-the-art method for low abundance mutations. Needlestack, along with its source code is freely available on the GitHub platform: https://github.com/IARCbioinfo/needlestack.

5.
J Thorac Oncol ; 13(10): 1483-1495, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981437

RESUMO

BACKGROUND: Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior. METHODS: Germline DNA from 260 case patients with LC and 318 controls were sequenced by utilizing VCRome 2.1 exome capture. Filtering was based on enrichment of rare and potential deleterious variants in cases (risk alleles) or controls (protective alleles). Allelic association analyses of single-variant and gene-based burden tests of multiple variants were performed. Promising candidates were tested in two independent validation studies with a total of 1773 case patients and 1123 controls. RESULTS: We identified 48 rare variants with deleterious effects in the discovery analysis and validated 12 of the 43 candidates that were covered in the validation platforms. The top validated candidates included one well-established truncating variant, namely, BRCA2, DNA repair associated gene (BRCA2) K3326X (OR = 2.36, 95% confidence interval [CI]: 1.38-3.99), and three newly identified variations, namely, lymphotoxin beta gene (LTB) p.Leu87Phe (OR = 7.52, 95% CI: 1.01-16.56), prolyl 3-hydroxylase 2 gene (P3H2) p.Gln185His (OR = 5.39, 95% CI: 0.75-15.43), and dishevelled associated activator of morphogenesis 2 gene (DAAM2) p.Asp762Gly (OR = 0.25, 95% CI: 0.10-0.79). Burden tests revealed strong associations between zinc finger protein 93 gene (ZNF93), DAAM2, bromodomain containing 9 gene (BRD9), and the gene LTB and LC susceptibility. CONCLUSION: Our results extend the catalogue of regions associated with LC and highlight the importance of germline rare coding variants in LC susceptibility.


Assuntos
Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA