Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 752: 142282, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207523

RESUMO

Herein, we report a method to synthesize nitrogen self-doped hierarchical porous carbon materials derived from chitosan. This method uses potassium hydroxide (KOH) activation and rapid-freezing technology. The catalyst (CA-900Q 1-1) obtained after rapid-freezing and KOH activation treatment show excellent persulfate activation ability. It can remove 20 mg bisphenol A (BPA) within 10 min better than traditional metal oxidate and nanomaterials. In the aquatic environment, CA-900Q 1-1 has a high resistance to inorganic anions. CA-900Q 1-1, possessing a high proportion of graphitic nitrogen, provides a sufficient number of active sites for persulfate activation. In addition, the catalyst yielded sizeable specific surface areas (SSAs) (1756.1 m2/g) and a hierarchical pore structure, which helps to improve the mass transfer in the carbon framework. The efficient adsorption of pollutants by the catalyst shortens the time required for target organic molecules to migrate to the catalyst surface and hierarchical pore structure. Furthermore, the catalyst has excellent electrical conductivity (R = 1.73 Ω), which enables pollutants adsorbed on the catalyst surface to transfer electrons to the persulfate through the N-doped sp2-hybrid carbon network faster.

2.
Sci Total Environ ; 759: 143478, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33213911

RESUMO

Increasing demand and waste of lithium-ion batteries (LIBs) has adversely affected resources and the environment. Multistage utilization of spent LIBs is essential to their sustainable development. Here, we propose a simple recycling method of LiCoO2 cathode scrap, based on the first use of the cathode scrap as a catalyst to degrade organic pollutants via peroxymonosulfate activation, and subsequent recovery of valuable metals from the used catalyst. Compared with pristine LiCoO2, the LiCoO2 cathode scrap exhibits excellent catalytic performance due to the active sites generated, such as the vacancy generation and electronic structure modulation by the degradation of LiCoO2 during the continuous lithiation and delithiation processes. The removal efficiency of cathode scrap to the o-phenylphenol exceeds 98% within 60 min, and the degradation efficiency is still above 95% after the 10th use because its unique sandwich and porous structure ensure the stability and recyclability. After multiple catalytic reactions, due to the generation of crack, the separation of the sandwich structure, and further degradation of active materials, the leaching efficiency of transition metals from the cathode scrap in deep eutectic solvent is promoted. 86% of lithium and 95% of cobalt are leached from the used catalyst respectively. This study provides a promising strategy for the sustainable development of LIBs and promotes the utilization of spent LIBs in multiaspect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA