Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 18(1): 1219, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514258

RESUMO

BACKGROUND: Metastatic melanoma is one of the most aggressive forms of cancer in humans. Among its types, mucosal melanomas represent one of the most highly metastatic and aggressive forms, with a very poor prognosis. Because they are rare in Caucasian individuals, unlike cutaneous melanomas, there has been fewer epidemiological, clinical and genetic evaluation of mucosal melanomas. Moreover, the lack of predictive models fully reproducing the pathogenesis and molecular alterations of mucosal melanoma makes its treatment challenging. Interestingly, dogs are frequently affected by melanomas of the oral cavity that are characterized, as their human counterparts, by focal infiltration, recurrence, and metastasis to regional lymph nodes, lungs and other organs. In dogs, some particular breeds are at high risk, suggesting a specific genetic background and strong genetic drivers. Altogether, the striking homologies in clinical presentation, histopathological features, and overall biology between human and canine mucosal melanomas make dogs invaluable natural models with which to investigate tumor development, including tumor ætiology, and develop tailored treatments. METHODS: We developed and characterized two canine oral melanoma cell lines from tumors isolated from dog patients with distinct clinical profiles; with and without lung metastases. The cells were characterized using immunohistochemistry, pharmacology and genetic studies. RESULTS: We have developed and immunohistochemically, genetically, and pharmacologically characterized. Two cell lines (Ocr_OCMM1X & Ocr_OCMM2X) were produced through mouse xenografts originating from two clinically contrasting melanomas of the oral cavity. Their exhaustive characterization showed two distinct biological and genetic profiles that are potentially linked to the stage of malignancy at the time of diagnosis and sample collection of each melanoma case. These cell lines thus constitute relevant tools with which to perform genetic and drug screening analyses for a better understanding of mucosal melanomas in dogs and humans. CONCLUSIONS: The aim of this study was to establish and characterize xenograft-derived canine melanoma cell lines with different morphologies, genetic features and pharmacological sensitivities that constitute good predictive models for comparative oncology. These cell lines are relevant tools to advance the use of canine mucosal melanomas as natural models for the benefit of both veterinary and human medicine.


Assuntos
Melanoma/diagnóstico por imagem , Melanoma/genética , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/genética , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Melanoma/tratamento farmacológico , Camundongos , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Melanoma Maligno Cutâneo
2.
Cancer Cell ; 34(5): 840-851.e4, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30344004

RESUMO

Histopathological diagnosis of biopsy samples and margin assessment of surgical specimens are challenging aspects in sarcoma. Using dog patient tissues, we assessed the performance of a recently developed technology for fast ex vivo molecular lipid-based diagnosis of sarcomas. The instrument is based on mass spectrometry (MS) molecular analysis through a laser microprobe operating under ambient conditions using excitation of endogenous water molecules. Classification models based on cancer/normal/necrotic, tumor grade, and subtypes showed a minimum of 97.63% correct classification. Specific markers of normal, cancer, and necrotic regions were identified by tandem MS and validated by MS imaging. Real-time detection capabilities were demonstrated by ex vivo analysis with direct interrogation of classification models.


Assuntos
Detecção Precoce de Câncer/métodos , Lipídeos/análise , Técnicas de Diagnóstico Molecular/métodos , Sarcoma/diagnóstico , Sarcoma/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Cães , Gradação de Tumores/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA