Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Intern Med ; 168(5): 326-334, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29335712

RESUMO

Background: The role of normal tissue gene promoter methylation in cancer risk is poorly understood. Objective: To assess associations between normal tissue BRCA1 methylation and ovarian cancer risk. Design: 2 case-control (initial and validation) studies. Setting: 2 hospitals in Norway (patients) and a population-based study (control participants). Participants: 934 patients and 1698 control participants in the initial study; 607 patients and 1984 control participants in the validation study. Measurements: All patients had their blood sampled before chemotherapy. White blood cell (WBC) BRCA1 promoter methylation was determined by using methylation-specific quantitative polymerase chain reaction, and the percentage of methylation-positive samples was compared between population control participants and patients with ovarian cancer, including the subgroup with high-grade serous ovarian cancer (HGSOC). Results: In the initial study, BRCA1 methylation was more frequent in patients with ovarian cancer than control participants (6.4% vs. 4.2%; age-adjusted odds ratio [OR], 1.83 [95% CI, 1.27 to 2.63]). Elevated methylation, however, was restricted to patients with HGSOC (9.6%; OR, 2.91 [CI, 1.85 to 4.56]), in contrast to 5.1% and 4.0% of patients with nonserous and low-grade serous ovarian cancer (LGSOC), respectively. These findings were replicated in the validation study (methylation-positive status in 9.1% of patients with HGSOC vs. 4.3% of control participants-OR, 2.22 [CI 1.40 to 3.52]-4.1% of patients with nonserous ovarian cancer, and 2.7% of those with LGSOC). The results were not influenced by tumor burden, storage time, or WBC subfractions. In separate analyses of young women and newborns, BRCA1 methylation was detected in 4.1% (CI, 1.8% to 6.4%) and 7.0% (CI, 5.0% to 9.1%), respectively. Limitations: Patients with ovarian cancer were recruited at the time of diagnosis in a hospital setting. Conclusion: Constitutively normal tissue BRCA1 promoter methylation is positively associated with risk for HGSOC. Primary Funding Source: Norwegian Cancer Society.


Assuntos
Metilação de DNA , Leucócitos , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Genes BRCA1 , Mutação em Linhagem Germinativa , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Noruega , Neoplasias Ovarianas/química , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase , Risco
2.
Genome Med ; 15(1): 104, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053165

RESUMO

BACKGROUND: Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. METHODS: To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Furthermore, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. RESULTS: We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (< 10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1-30.5). In contrast, we found concordant WBC and tumor methylation in only three out of 220 patients with 221 ER ≥ 10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9/200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46/575; 8.0%; p = 0.0003). CONCLUSIONS: Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Adulto , Feminino , Recém-Nascido , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias da Mama/genética , Metilação de DNA , Regiões Promotoras Genéticas , Proteína BRCA1/genética
3.
JCO Precis Oncol ; 7: e2300338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38039432

RESUMO

PURPOSE: Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. METHODS: HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. RESULTS: HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P < .001). CONCLUSION: The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Antígeno B7-H1/genética , Genes BRCA2 , Mutação , Recombinação Homóloga/genética
4.
Clin Epigenetics ; 12(1): 131, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859265

RESUMO

BACKGROUND: The number of tumor suppressor genes for which germline mutations have been linked to cancer risk is steadily increasing. However, while recent reports have linked constitutional normal tissue promoter methylation of BRCA1 and MLH1 to ovarian and colon cancer risk, the role of epigenetic alterations as cancer risk factors remains largely unknown, presenting an important area for future research. Currently, we lack fast and sensitive methods for assessment of promoter methylation status across known tumor suppressor genes. RESULTS: In this paper, we present a novel NGS-based approach assessing promoter methylation status across a large panel of defined tumor suppressor genes to base-pair resolution. The method omits the limitations related to commonly used array-approaches. Our panel includes 565 target regions covering the promoters of 283 defined tumor suppressors, selected by pre-specified criteria, and was applied for rapid targeted methylation-specific NGS. The feasibility of the method was assessed by analyzing normal tissue DNA (white blood cells, WBC) samples from 34 healthy postmenopausal women and by performing preliminary assessment of the methylation landscape of tumor suppressors in these individuals. The mean target coverage was 189.6x providing a sensitivity of 0.53%, sufficient for promoter methylation assessment of low-level methylated genes like BRCA1. Within this limited test-set, we detected 206 regions located in the promoters of 149 genes to be differentially methylated (hyper- or hypo-) at > 99% confidence level. Seven target regions in gene promoters (CIITA, RASSF1, CHN1, PDCD1LG2, GSTP1, XPA, and ZNF668) were found to be hyper-methylated in a minority of individuals, with a > 20 percent point difference in mean methylation across the region between individuals. In an exploratory hierarchical clustering analysis, we found that the individuals analyzed may be grouped into two main groups based on their WBC methylation profile across the 283 tumor suppressor gene promoters. CONCLUSIONS: Methylation-specific NGS of our tumor suppressor panel, with detailed assessment of differential methylation in healthy individuals, presents a feasible method for identification of novel epigenetic risk factors for cancer.


Assuntos
Metilação de DNA/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Epigênese Genética/genética , Feminino , Humanos , Pós-Menopausa , Valores de Referência
5.
FEBS J ; 272(20): 5365-77, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16218966

RESUMO

Metabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits. Pretreatment with proteasome inhibitors attenuated the degradation of both G alpha subunits. In contrast, pretreatment of cells with inhibitors of lysosomal proteases and nonproteasomal cysteine proteases had very little effect on the stability of the proteins. Significantly, the turnover of these proteins is not affected by transient activation of their associated receptors. Fractionation studies showed that the rates of Galpha(q) and Galpha16 degradation are accelerated in the cytosol. In fact, we show that a mutant Galpha(q) which lacks its palmitoyl modification site, and which is localized almost entirely in the cytoplasm, has a marked increase in the rate of degradation. Taken together, these results suggest that the G(q) class proteins are degraded through the proteasome pathway and that cellular localization and/or other protein interactions determine their stability.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Carbacol/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Citosol/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Fosfatos de Inositol/metabolismo , Mutação/genética , Inibidores de Proteassoma , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Transfecção
6.
PLoS One ; 7(8): e40864, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870205

RESUMO

BACKGROUND: Filamin A (FLNa) is an actin-crosslinking protein necessary for stabilizing the cell surface, organizing protrusive activity and for promoting efficient cellular translocation. Recently, our group demonstrated the requirement of FLNa for the internalization of the chemokine receptor CCR2B. METHODOLOGY AND PRINCIPAL FINDINGS: In order to study the role of FLNa in vitro and in real-time, we have developed a fluorescent FLNa-EGFP construct. In this novel imaging tool, we introduced the EGFP-tag inside the flexible hinge 1 region of FLNa between two calpain cleavage sites. Our findings indicate that the FLNa-EGFP construct was correctly expressed, cleaved by calpain and colocalized with actin filaments as shown by immunostaining experiments in the human melanoma cell lines A7 (FLNa-repleted) and M2 (FLNa-deficient). In addition, scanning-electron microscopy (SEM) and micropatterning studies also provided clear evidence that the cell rigidity was restored. FLNa-EGFP allowed us to demonstrate the interaction of FLNa with the chemokine receptor CCR2B in endocytic vesicles after CCL2 ligand stimulation. Through live-cell imaging studies we show that the CCR2B receptor in Rab5-positive vesicles moves along filamin A-positive fibers. SIGNIFICANCE: Taken together, these results outline the functionality of the FLNa-EGFP and the importance of filamin A for receptor internalization and movement into endocytic vesicles.


Assuntos
Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Receptores CCR2/metabolismo , Vesículas Transportadoras/metabolismo , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas Contráteis/genética , Filaminas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Varredura , Transporte Proteico/fisiologia , Receptores CCR2/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Transportadoras/genética , Vesículas Transportadoras/ultraestrutura , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
PLoS One ; 5(8): e12212, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20808917

RESUMO

The chemokine (C-C motif) receptor 2B (CCR2B) is one of the two isoforms of the receptor for monocyte chemoattractant protein-1 (CCL2), the major chemoattractant for monocytes, involved in an array of chronic inflammatory diseases. Employing the yeast two-hybrid system, we identified the actin-binding protein filamin A (FLNa) as a protein that associates with the carboxyl-terminal tail of CCR2B. Co-immunoprecipitation experiments and in vitro pull down assays demonstrated that FLNa binds constitutively to CCR2B. The colocalization of endogenous CCR2B and filamin A was detected at the surface and in internalized vesicles of THP-1 cells. In addition, CCR2B and FLNa were colocalized in lamellipodia structures of CCR2B-expressing A7 cells. Expression of the receptor in filamin-deficient M2 cells together with siRNA experiments knocking down FLNa in HEK293 cells, demonstrated that lack of FLNa delays the internalization of the receptor. Furthermore, depletion of FLNa in THP-1 monocytes by RNA interference reduced the migration of cells in response to MCP-1. Therefore, FLNa emerges as an important protein for controlling the internalization and spatial localization of the CCR2B receptor in different dynamic membrane structures.


Assuntos
Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Receptores CCR2/metabolismo , Actinas/metabolismo , Animais , Arrestinas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Quimiocina CCL2/farmacologia , Filaminas , Humanos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ligação Proteica , Transporte Proteico , Receptores CCR2/química , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA