Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Mol Cell Cardiol ; 61: 142-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23531443

RESUMO

Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Assuntos
Acetilcolina/farmacologia , Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Agonistas Muscarínicos/farmacologia , Idoso , Arritmia Sinusal/metabolismo , Arritmia Sinusal/fisiopatologia , Fibrilação Atrial/metabolismo , Carbacol/farmacologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Sódio/metabolismo
2.
Cell Signal ; 26(6): 1182-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24576551

RESUMO

Opening of G-protein-activated inward-rectifying K(+) (GIRK, Kir3) channels is regulated by interaction with ßγ-subunits of Pertussis-toxin-sensitive G proteins upon activation of appropriate GPCRs. In atrial and neuronal cells agonist-independent activity (I(basal)) contributes to the background K(+) conductance, important for stabilizing resting potential. Data obtained from the Kir3 signaling pathway reconstituted in Xenopus oocytes suggest that I(basal) requires free G(ßγ). In cells with intrinsic expression of Kir3 channels this issue has been scarcely addressed experimentally. Two G(ßγ)-binding proteins (myristoylated phosducin - mPhos - and G(αi1)) were expressed in atrial myocytes using adenoviral gene transfer, to interrupt G(ßγ)-signaling. Agonist-induced and basal currents were recorded using whole cell voltage-clamp. Expression of mPhos and G(αi1) reduced activation of Kir3 current via muscarinic M(2) receptors (IK(ACh)). Inhibition of IK(ACh) by mPhos consisted of an irreversible component and an agonist-dependent reversible component. Reduction in density of IK(ACh) by overexpressed Gαi1, in contrast to mPhos, was paralleled by substantial slowing of activation, suggesting a reduction in density of functional M2 receptors, rather than G(ßγ)-scavenging as underlying mechanism. In line with this notion, current density and activation kinetics were rescued by fusing the αi1-subunit to an Adenosine A(1) receptor. Neither mPhos nor G(αi1) had a significant effect on I(basal), defined by the inhibitory peptide tertiapin-Q. These data demonstrate that basal Kir3 current in a native environment is unrelated to G-protein signaling or agonist-independent free G(ßγ). Moreover, our results illustrate the importance of physiological expression levels of the signaling components in shaping key parameters of the response to an agonist.


Assuntos
Proteínas do Olho/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Reguladores de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Miócitos Cardíacos/fisiologia , Fosfoproteínas/genética , Acetilcolina/farmacologia , Potenciais de Ação , Animais , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Proteínas do Olho/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Átrios do Coração/citologia , Ativação do Canal Iônico , Miócitos Cardíacos/efeitos dos fármacos , Fosfoproteínas/metabolismo , Ratos , Receptor Muscarínico M2/metabolismo , Transdução de Sinais
3.
PLoS One ; 6(6): e20855, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695261

RESUMO

BACKGROUND: Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P(2) in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane(.) For controlled and reversible depletion of PtdIns(4,5)P(2), voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. METHODS AND RESULTS: Expression and correct targeting of ECFP-PH-PLCδ1(,) EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P(2) in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K(+) (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P(2) was identified. CONCLUSIONS: Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral constructs containing self-cleaving 2A-peptide sequences are highly suited for simultaneous transfer of multiple genes in adult cardiac myocytes.


Assuntos
Membrana Celular/metabolismo , Técnicas Genéticas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Adenoviridae/genética , Animais , Ciona intestinalis/enzimologia , DNA Complementar/genética , Transferência Ressonante de Energia de Fluorescência , Vetores Genéticos/genética , Células HEK293 , Átrios do Coração/citologia , Homeostase , Humanos , Miócitos Cardíacos/metabolismo , Fases de Leitura Aberta/genética , Fosfolipase C delta/química , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Monoéster Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA