Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36366238

RESUMO

Supervised image-to-image translation has been proven to generate realistic images with sharp details and to have good quantitative performance. Such methods are trained on a paired dataset, where an image from the source domain already has a corresponding translated image in the target domain. However, this paired dataset requirement imposes a huge practical constraint, requires domain knowledge or is even impossible to obtain in certain cases. Due to these problems, unsupervised image-to-image translation has been proposed, which does not require domain expertise and can take advantage of a large unlabeled dataset. Although such models perform well, they are hard to train due to the major constraints induced in their loss functions, which make training unstable. Since CycleGAN has been released, numerous methods have been proposed which try to address various problems from different perspectives. In this review, we firstly describe the general image-to-image translation framework and discuss the datasets and metrics involved in the topic. Furthermore, we revise the current state-of-the-art with a classification of existing works. This part is followed by a small quantitative evaluation, for which results were taken from papers.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
2.
Sensors (Basel) ; 22(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684612

RESUMO

We present TIMo (Time-of-flight Indoor Monitoring), a dataset for video-based monitoring of indoor spaces captured using a time-of-flight (ToF) camera. The resulting depth videos feature people performing a set of different predefined actions, for which we provide detailed annotations. Person detection for people counting and anomaly detection are the two targeted applications. Most existing surveillance video datasets provide either grayscale or RGB videos. Depth information, on the other hand, is still a rarity in this class of datasets in spite of being popular and much more common in other research fields within computer vision. Our dataset addresses this gap in the landscape of surveillance video datasets. The recordings took place at two different locations with the ToF camera set up either in a top-down or a tilted perspective on the scene. Moreover, we provide experimental evaluation results from baseline algorithms.


Assuntos
Algoritmos , Humanos
3.
IEEE Trans Pattern Anal Mach Intell ; 39(10): 2045-2059, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27810799

RESUMO

We propose a novel approach for enhancing depth videos containing non-rigidly deforming objects. Depth sensors are capable of capturing depth maps in real-time but suffer from high noise levels and low spatial resolutions. While solutions for reconstructing 3D details in static scenes, or scenes with rigid global motions have been recently proposed, handling unconstrained non-rigid deformations in relative complex scenes remains a challenge. Our solution consists in a recursive dynamic multi-frame super-resolution algorithm where the relative local 3D motions between consecutive frames are directly accounted for. We rely on the assumption that these 3D motions can be decoupled into lateral motions and radial displacements. This allows to perform a simple local per-pixel tracking where both depth measurements and deformations are dynamically optimized. The geometric smoothness is subsequently added using a multi-level L1 minimization with a bilateral total variation regularization. The performance of this method is thoroughly evaluated on both real and synthetic data. As compared to alternative approaches, the results show a clear improvement in reconstruction accuracy and in robustness to noise, to relative large non-rigid deformations, and to topological changes. Moreover, the proposed approach, implemented on a CPU, is shown to be computationally efficient and working in real-time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA