Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 327(4): C1023-C1034, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39159388

RESUMO

Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K+ (KV) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal KV currents in a concentration-dependent manner (IC50 = 309 µM). An expression analysis revealed that KV4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of KV4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing KV4.2 channels, melatonin decreased outward currents (IC50 = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of KV4.3, KV1.1, and KV1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, KV4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited KV4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. NEW & NOTEWORTHY Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium KV4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.


Assuntos
Melatonina , Glândula Pineal , Canais de Potássio Shal , Animais , Glândula Pineal/metabolismo , Glândula Pineal/efeitos dos fármacos , Melatonina/farmacologia , Humanos , Células HEK293 , Ratos , Masculino , Canais de Potássio Shal/metabolismo , Canais de Potássio Shal/genética , Ratos Sprague-Dawley , Potenciais da Membrana/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 615: 157-162, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35643055

RESUMO

Melatonin secretion from the pineal glands regulates circadian rhythms in mammals. Melatonin production is decreased by an increase in cytosolic Ca2+ concentration following the activation of nicotinic acetylcholine receptors in parasympathetic systems. We previously reported that pineal Ca2+ oscillations were regulated by voltage-dependent Ca2+ channels and large-conductance Ca2+-activated K+ (BKCa) channels, which inhibited melatonin production. In the present study, the contribution of small- and intermediate-conductance Ca2+-activated K+ (SKCa and IKCa) channels to the regulation of spontaneous Ca2+ oscillations was examined in rat pinealocytes. The amplitude and frequency of spontaneous Ca2+ oscillations were increased by a SKCa channel blocker (100 nM apamin), but not by an IKCa channel blocker (1 µM TRAM-34). On the other hand, they were decreased by a SKCa channel opener (100 µM DCEBIO), but not by an IKCa channel opener (1 µM DCEBIO). Expression analyses using quantitative real-time PCR, immunocytochemical staining, and Western blotting revealed that the SKCa2 channel subtype was abundantly expressed in rat pinealocytes. Moreover, the enhanced amplitude of Ca2+ oscillations in the presence of apamin was further increased by a BKCa channel blocker (1 µM paxilline). These results suggest that the activity of SKCa2 channels regulates cytosolic Ca2+ signaling and melatonin production during parasympathetic activation in pineal glands.


Assuntos
Melatonina , Glândula Pineal , Canais de Potássio Cálcio-Ativados , Animais , Apamina/farmacologia , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Melatonina/metabolismo , Glândula Pineal/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Pirazóis/farmacologia , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA