RESUMO
The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.
Assuntos
Neoplasias da Mama , Edição de Genes , Animais , Humanos , Camundongos , Feminino , Virulência , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Éxons/genética , Códon , Nucleotídeos , Neoplasias da Mama/genética , Predisposição Genética para Doença , Proteína BRCA1/genéticaRESUMO
Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.
Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Testes Genéticos , Neoplasias Ovarianas/genética , Homozigoto , Neoplasias da Mama/genética , Proteína BRCA1/genética , Predisposição Genética para DoençaRESUMO
The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB.
Assuntos
Quebras de DNA de Cadeia Dupla , Rad51 Recombinase , Animais , DNA , Reparo do DNA/genética , Recombinação Homóloga , Camundongos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismoRESUMO
WDR13 - a WD repeat protein, is abundant in pancreas, liver, ovary and testis. Absence of this protein in mice has been seen to be associated with pancreatic ß-cell proliferation, hyperinsulinemia and age dependent mild obesity. Previously, we have reported that the absence of WDR13 in diabetic Leprdb/db mice helps in amelioration of fatty liver phenotype along with diabetes and systemic inflammation. This intrigued us to study direct liver injury and hepatic regeneration in Wdr13-/0 mice using hepatotoxin CCl4. In the present study we report slower hepatic regeneration in Wdr13-/0 mice as compared to their wild type littermates after CCl4 administration. Interestingly, during the regeneration phase, hepatic hypertriglyceridemia was observed in Wdr13-/0 mice. Further analyses revealed an upregulation of PPAR pathway in the liver of CCl4- administered Wdr13-/0 mice, causing de novo lipogenesis. The slower hepatic regeneration observed in CCl4 administered Wdr13-/0 mice, may be linked to liver hypertriglyceridemia because of activation of PPAR pathway.
RESUMO
Type I diabetes, though contributes to only 5-10% of total diabetes cases, is a rising concern in today's world. Our previous studies have shown that the absence of WDR13 in mouse results in pancreatic ß-cell hyper-proliferation. Also, amelioration of the diabetic phenotype on introgression of Wdr13-null (Wdr13-/0) mutation in genetically diabetic mice (Leprdb/db) [type II diabetes] was observed. It was thus, interesting to see the role of WDR13 in streptozotocin-mediated diabetes in mice, a model for type I diabetes. Wdr13-/0 mice along with its wild type (Wdr13+/0 mice) littermates were administered streptozotocin intraperitoneally for 5 consecutive days. Blood glucose levels and body weights of these mice were monitored for subsequent 5 weeks and then they were sacrificed for physiological and histological analyses. Results showed that Wdr13-/0 mice exhibited higher serum insulin levels, better glucose clearance and significantly higher number of proliferating ß-cells; reiterating the finding that absence of WDR13 helps in ß-cell hyper-proliferation and recovery from diabetes; further underscoring WDR13 as a key target molecule for diabetes treatment/amelioration.