Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(2): 020401, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277581

RESUMO

Quantum many-body scars consist of a few low-entropy eigenstates in an otherwise chaotic many-body spectrum, and can weakly break ergodicity resulting in robust oscillatory dynamics. The notion of quantum many-body scars follows the original single-particle scars introduced within the context of quantum billiards, where scarring manifests in the form of a quantum eigenstate concentrating around an underlying classical unstable periodic orbit. A direct connection between these notions remains an outstanding problem. Here, we study a many-body spinor condensate that, owing to its collective interactions, is amenable to the diagnostics of scars. We characterize the system's rich dynamics, spectrum, and phase space, consisting of both regular and chaotic states. The former are low in entropy, violate the eigenstate thermalization hypothesis, and can be traced back to integrable effective Hamiltonians, whereas most of the latter are scarred by the underlying semiclassical unstable periodic orbits, while satisfying the eigenstate thermalization hypothesis. We outline an experimental proposal to probe our theory in trapped spin-1 Bose-Einstein condensates.

2.
Entropy (Basel) ; 23(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652970

RESUMO

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA