Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8009): 758-764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538800

RESUMO

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

2.
J Phys Chem A ; 126(48): 8955-8963, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36448223

RESUMO

Fullerenes are used extensively in organic electronics as electron acceptors among other uses; however, there are still several key mysteries regarding their formation such as the importance of graphitic intermediates and the thermokinetics of initial cage formation. To this end, we have conducted density functional tight binding molecular dynamics (DFTB-MD) calculations on disintegrated Ih-C60 to investigate the formation mechanisms of fullerenes at high temperature conditions. From the results of these DFTB-MD calculations we were able to develop a thermokinetic model to describe the free energies and kinetics of fullerene formation at a range of temperatures. Direct observation of the mechanism revealed fullerenes readily forming in nanosecond times between 2000 and 3000 K but were hindered above this temperature window. Analysis revealed temperature dependent formation mechanisms where at low temperatures (<2750K) flat graphitic bowls play an important part as metastable intermediates while highly curved bowls follow a direct fast transformation. Meanwhile at higher temperatures (>2750 K), flat bowls become the transitory structure between chains and fullerene. Free energy analysis from our thermokinetic model shows this change in graphitic bowls to being transitory hinders fullerene formation at high temperatures compared to lower temperatures, essentially kinetically trapping C60 as chain networks. This investigation gives new key insights into the formation mechanisms of C60 fullerenes and highlights important intermediates while also illuminating the temperature window for fullerene formation, facilitating better optimization of experimental methods.

3.
J Phys Chem A ; 125(21): 4548-4557, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34032443

RESUMO

The Stone-Wales bond rotation isomerization of nonicosahedral C60 (C2v-C60) into isolated-pentagon rule following icosahedral C60 (Ih-C60 or IPR-C60) is a limiting step in the synthesis of Ih-C60. However, extensive previous studies indicate that the potential energy barrier of the Stone-Wales bond rotation is between 6 and 8 eV, extremely high to allow for bond rotation at the temperatures used to produce fullerenes conventionally. This is also despite data indicating a possible fullerene road mechanism that necessitates low-temperature annealing. However, these previous investigations often have limiting factors, such as using the harmonic approximation to determine free energies at high temperatures or considering only the reverse Ih-C60 to C2v-C60 transition as a basis. Indeed, when the difference in energy between Ih-C60 and C2v-C60 is accounted for, this barrier is generally reduced by ∼1.5 eV. Thus, utilizing the recently developed density functional tight binding metadynamics (DFTB-MTD) interface, the effects of temperature on the bond rotation in the conversion of C2v-C60 to Ih-C60 have been investigated. We found that Stone-Wales bond rotations are complex processes with both in-plane and out-of-plane transition states, and which transition path dominates depends on temperature. Our results clearly show that at temperatures of 2000 K, the free energy for a C2v-C60 to Ih-C60 transition is only ∼4.21 eV and further reduces to ∼3.77 eV at 3000 K. This translates to transition times of ∼971 µs at 2000 K and ∼34 ns at 3000 K, indicating that defect healing is a fast process at temperatures typical of arc jet or laser ablation experiments. Conversely, below ∼2000 K, bond rotation becomes prohibitively slow, putting a lower threshold limit on the temperature of fullerene formation and subsequent annealing.

4.
J Comput Chem ; 39(29): 2452-2458, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30238475

RESUMO

The timescale problem-in which high barriers on the free energy surface trap molecular dynamics simulations in local energy wells-is a key limitation of current reactive MD simulations based on the density functional tight binding (DFTB) potential. Here, we report a new interface between the DFTB+ software package and the PLUMED library for performing DFTB-based free energy calculations. We demonstrate the performance of this interface for 3 archetypal rare-event chemical reactions, (i) intramolecular proton transfer in malonaldehyde, (ii) bowl inversion in corannulene, and (iii) oxygen diffusion on graphene. Using third-order DFTB in conjunction with metadynamics (with/without multiple walkers) and well-tempered metadynamics, we report here free energies of activation (ΔG‡ ) of 13.1 ± 0.4, 48.2 ± 1.7, and 52.0 ± 6.2 kJ mol-1 , respectively, for these processes. In each case, our DFTB free energy barriers and local minima compare favorably with previous literature results, demonstrating the utility of the DFTB+ - PLUMED interface. © 2018 Wiley Periodicals, Inc.

5.
Phys Chem Chem Phys ; 20(30): 19987-19994, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30022198

RESUMO

First principles calculations demonstrate that alkali metal atoms, intercalated between metal substrates and adsorbed graphene monolayers, induce localised regions of increased reactivity. The extent of this localisation is proportional to the size of the alkali atom and the strength of the graphene-substrate interaction. Thus, larger alkali atoms are more effective (e.g. K > Na > Li), as are stronger-interacting substrates (e.g. Ni > Cu). Despite the electropositivity of these alkali metal adsorbates, analysis of charge transfer between the alkali metal, the substrate and the adsorbed graphene layer indicates that charge transfer does not give rise to the observed regioselective reactivity. Instead, the increased reactivity induced in the graphene structure is shown to arise from the geometrical distortion of the graphene layer imposed by the intercalated adsorbed atom. We show that this strategy can be used with arbitrary adsorbates and substrate defects, provided such structures are stable, towards controlling the mesoscale patterning and chemical functionalisation of graphene structures.

6.
Phys Chem Chem Phys ; 19(39): 26466-26494, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28849841

RESUMO

Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.

7.
J Chem Phys ; 145(2): 024105, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421395

RESUMO

We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.

8.
Nat Commun ; 14(1): 1804, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002204

RESUMO

In chemistry, theory of aromaticity or π bond resonance plays a central role in intuitively understanding the stability and properties of organic molecules. Here we present an analogue theory for σ bond resonance in flat boron materials, which allows us to determine the distribution of two-center two-electron and three-center two-electron bonds without quantum calculations. Based on this theory, three rules are proposed to draw the Kekulé-like bonding configurations for flat boron materials and to explore their properties intuitively. As an application of the theory, a simple explanation of why neutral borophene with ~1/9 hole has the highest stability and the effect of charge doping on borophene's optimal hole concentration is provided with the assumption of σ and π orbital occupation balance. Like the aromaticity theory for carbon materials, this theory greatly deepens our understanding on boron materials and paves the way for the rational design of various boron-based materials.

9.
Adv Mater ; 34(28): e2200956, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35560711

RESUMO

Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices.

10.
J Phys Chem Lett ; 11(15): 6235-6241, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640798

RESUMO

In two-dimensional (2D) borophene, the structural transition from triangular lattice to hexagonal lattice with an increase in vacancy concentration is a basic principle of constructing various borophene isomers. Here, by performing an extensive structural search of 4239 borophene isomers with both hexagonal holes (HHs) and large holes (LHs), we show that the structural transformation from triangular lattice to borophene with large holes is energetically more favorable. Borophene isomers with LHs are more stable than those with only HHs at high vacancy concentrations (>20%) and are just slightly less stable than those with only HHs at low vacancy concentrations. This discovery greatly expands the family of 2D borophene and opens a route for synthesizing new borophene isomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA