Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Langmuir ; 39(49): 17939-17946, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039385

RESUMO

Size segregation of nanoparticles with different sizes into highly ordered, unique nanostructures is important for their practical applications. Herein, we demonstrate spontaneous self-assembly of the binary mixtures of small and large gold nanoparticles (GNPs; 5/15, 5/20, or 10/20 in diameter) in the presence of a tetra(ethylene glycol)-terminated octafluoro-4,4'-biphenol ligand, namely, TeOFBL, resulting in a size-segregated assembly. The outer single layer of large GNPs forming a gold nanoparticle vesicle (GNV) encapsulated the inner vesicle-like assembly composed of small GNPs, which is referred to as bilayer-like GNV and similar to the molecular bilayer structure of a liposome. The size segregation was driven by the solvophobic feature of the TeOFBLs on the surface of GNPs. A time-course study indicated that size segregation occurred instantaneously during the mixing stage of the self-organization process. The size-segregated precursors quickly fused with each other through the inner-inner and outer-outer layer fashion to form the bilayer-like GNV. This study provides a new approach to creating biomimetic bilayer capsules with different physical properties for potential applications such as surface-enhanced Raman scattering and drug delivery.

2.
Cell Struct Funct ; 46(2): 95-101, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34565768

RESUMO

Among the inheritance of cellular components during cell division, deoxyribonucleic acid (DNA) and its condensate (chromosome) are conventionally visualized using chemical tag-labeled nucleotide analogs. However, associated mutagenesis with nucleotide analogs in the visualization of chromosomes is cause for concern. This study investigated the efficiency of using stable isotope labels in visualizing the replicating cultured human cell-chromosomes, in the absence of analog labels, at a high spatial resolution of 100 nm. The distinct carbon isotope ratio between sister chromatids reflected the semi-conservative replication of individual DNA strands through cell cycles and suggested the renewal of histone molecules in daughter chromosomes. Thus, this study provides a new, powerful approach to trace and visualize cellular components with stable isotope labeling.Key words: stable isotope, chromosome replication, semi-conservative replication, imaging, mass spectrometry.


Assuntos
Cromátides , Replicação do DNA , Isótopos de Carbono , Divisão Celular , Humanos , Marcação por Isótopo
3.
Langmuir ; 37(32): 9694-9700, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34369779

RESUMO

Water-stable gold nanoparticle vesicles (GNVs) with hollow interiors have attracted attention due to their great potential for biological applications; however, their preparation through the self-assembly approaches has been restricted due to the limited understanding of their critical mechanistic issues. In this paper, we demonstrate that a fluorinated tetra (ethylene glycol) (FTEG)-terminated tetra (ethylene glycol) (EG4), namely, FTEG-EG4, ligand can self-assemble with gold nanoparticles (5 and 10 nm) into GNVs with a hollow structure in THF due to the solvophobic feature of the ligand. Time-dependent studies showed that the GNVs with a closely packed surface derived from the incomplete and irregular GNVs, but not through the fusion of the GNV precursors. After dialysis in water, the assemblies retained vesicular structures in water, even though GNVs aggregated together, which was initiated by the hydrophobic interactions between the FTEG heads of the surface ligands on GNVs. This study provides a new insight into the design of novel small surface ligands to produce water-stable GNVs for biological applications.


Assuntos
Ouro , Nanopartículas Metálicas , Etilenoglicol , Ligantes , Propriedades de Superfície , Água
4.
Biochemistry ; 59(23): 2194-2202, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32470294

RESUMO

Tropomyosin (Tpm) is a two-stranded parallel α-helical coiled-coil protein, and studying its structure is crucial for understanding the nature of coiled coils. Previously, we found that the N-terminal half of the human skeletal muscle α-Tpm (α-Tpm 140) was less structurally stable in the presence of phosphate ions than the coiled-coil protein carrier (CCPC) 140 variant with 18 mutated residues, in which all amino acid residues located at the interface between the two α-helices were completely conserved. A classical hypothesis explains that interhelical interactions stabilize the coiled-coil structure. In this study, we tested the hypothesis that the structural stability of Tpm and its variant is governed by the binding of multivalent ions that form a bridge between charged side chains located at positions b, c, and f of the heptad repeat on a single α-helical chain. We found that the structural stability of α-Tpm 140 and CCPC 140 markedly increased upon addition of divalent cations and divalent anions, respectively. We also clarified that the structural stability of the α-Tpm 140/CCPC 140 heteromeric coiled-coil molecule was governed by the stability of a less stable α-helical chain. These results demonstrated that the entire structural stability of Tpm is determined by the stability of a single α-helix. Our findings provide new insights into the study of the structure of coiled-coil proteins.


Assuntos
Tropomiosina/química , Humanos , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Temperatura
5.
Langmuir ; 36(13): 3590-3599, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32049537

RESUMO

The development of a strategy for the assembly of nanoscale building blocks, in particular, anisotropic nanoparticles, into desired structures is important for the construction of functional materials and devices. However, control over the orientation of rod-shaped nanoparticles on a substrate for integration into solid-state devices remains challenging. Here, we report a strategy for the fabrication of finely aligned gold nanorod (GNR) arrays using polymer (DNA) brushes as a nanoscale template. The gold nanorods modified with cationic surface ligands were electrostatically adsorbed onto the DNA brush substrates under various conditions. The orientational behavior of the GNRs was examined by spectral analyses and transmission electron microtomography (TEMT). As a result, we found several important factors, such as moderate interaction between GNRs and polymers and polymer densities on the substrate, related to the vertical alignment of GNRs on the substrates. We also developed a purification method to remove the undesired adsorption of GNRs onto the arrays. Finally, we have succeeded in the fabrication of extensive vertical GNR arrays of high quality via the easy bottom-up process.

6.
Small ; 14(14): e1704230, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457380

RESUMO

Gold nanorods (GNRs) coated with a single kind of ligand show thermoreponsive two-step assembly to provide a hierarchical structure. The GNRs (33 nm in length × 14 nm in diameter) coated with a hexa(ethylene glycol) (HEG) derivative form side-by-side assemblies at 30 °C (TA1 ) as a steady state through dehydration. By further heating to over 40 °C (TA2 ), larger assemblies, which are composed of the side-by-side assembled units, are formed as hierarchical structures. The dehydration temperature of the HEG derivative varies depending on the free volume of the HEG unit, which corresponds to the curvature of the GNRs. Upon heating, dehydration first occurs from the ligands on the side portions with a lower curvature, and then from the ligands on the edge portions with a higher curvature. The different sized GNRs (33 × 8 and 54 × 15 nm) also show two-step assembly. Both the TA1 and TA2 are dependent on the diameter of the GNRs, but independent of their length. This result supports that the dehydration is dependent on the free volume, which corresponds to the curvature. Anisotropic assembly focusing on differences in curvature provides new guidelines for the fabrication of hierarchical structures.

7.
Langmuir ; 34(41): 12445-12451, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30230846

RESUMO

The self-assembly of gold nanoparticles (GNPs) into a defined structure, particularly hollow capsule structures, provides great potential for applications in materials science and medicine. However, the complexity of the parameters for the preparation of those structures through self-assembly has limited access to critical mechanistic questions. With this in mind, we have studied GNP vesicle (GNV) formation through self-assembly by the surface modification of GNPs with low-molecular-weight ligands. Here, we successfully prepared GNVs composed of GNPs with a diameter of 30 nm by surface modification with carboxylic acid-terminated fluorinated oligo(ethylene glycol) ligands (CFLs). As the carboxylic acid has two states (protonated and deprotonated), the balance of the attraction and repulsion between GNPs covered with CFLs is tunable. Sodium carboxylate-terminated fluorinated oligo(ethylene glycol) ligands (SCFLs) provided smaller GNVs than did CFLs at 0.8 × 1011 NPs/mL. Time-course study revealed that CFL-covered GNPs quickly form small aggregates and gradually grow to larger GNVs (ca. 200 nm), but no gradual growth was observed for SCFL-covered GNPs. This result indicated that the electrostatic repulsion inhibits fusion of the small GNVs. The size of the GNVs formed with the aid of CFLs was independent of the initial GNP concentration, but the extinction spectra were concentration-dependent. Electron microscopy imaging and simulations supported the defect formation in the assemblies. These results provided new insights into the vesicle formation mechanism.

8.
Langmuir ; 33(22): 5537-5544, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28505438

RESUMO

Stimuli-responsive assembly of gold nanoparticles (AuNPs) with precise control of the plasmonic properties, assembly size, and stimuli responsivity has shown potential benefits with regard to biosensing devices and drug-delivery systems. Here we present a new pH-responsive coassembly system of oligo(ethylene glycol) (OEG)-coated AuNPs with anionic polymers as an external mediator via hydrogen bonding in water. Hydrogen-bond-driven coassemblies of OEG-AuNPs with poly(acrylic acid) (PAA) were confirmed by the monitoring of plasmonic peaks and hydrodynamic diameters. In this system, the protonation of anionic polymers on change in pH triggered the formation of hydrogen bond between the OEG-AuNPs and polymers, providing sensitive pH responsivity. The plasmonic properties and assembly size are affected by both the ratio of PAA to AuNPs and the molecular weight of PAAs. In addition, the attachment of hydrophobic groups to the surface ligand or anionic polymer changed the responsive pH range. These results demonstrated that the coassembly with an external mediator via hydrogen bonding provides a stimuli-responsive assembly system with tunable plasmonic properties, assembly size, and stimuli responsivity.

9.
J Am Chem Soc ; 138(10): 3274-7, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26924649

RESUMO

We demonstrate that binary mixtures of small and large gold nanoparticles (GNPs) (5/15, 5/30, 10/30, and 15/30 nm in diameter) in the presence of a glucose-terminated fluorinated oligo(ethylene glycol) ligand can spontaneously form size-segregated assemblies. The outermost layer of the assembly is composed of a single layer of small-sized GNPs, while the larger-sized GNPs are located in the interior, forming what is referred to as a yolk/shell assembly. Time course study reveals that small and large GNPs aggregate together, and these kinetically trapped aggregations were transformed into a size-segregated structure by repeating fusions. A yolk/shell structure was directly visualized in solution by X-ray laser diffraction imaging, indicating that the structure was truly formed in solution, but not through a drying process.

10.
Langmuir ; 32(47): 12559-12567, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27653187

RESUMO

Gold nanoparticles (GNPs) show promise as both drug and imaging carriers with applications in both diagnosis and therapy. For the safe and effective use of such gold nanomaterials in the biomedical field, it is crucial to understand how the size and shape of the nanomaterials affect their biological features, such as in vitro cellular uptake speed and accumulation as well as cytotoxicity. Herein, we focus on triangular gold nanoparticles (TNPs) of four different sizes (side length 46, 55, 72, and 94 nm; thickness 30 nm) and compare the cellular internalization efficiency with those of spherical nanoparticles (SNPs) of various diameters (22, 39, and 66 nm). Both surfaces were coated with anionic thiol ligands. Inductively coupled plasma-emission spectrometry (ICP-ES) data demonstrated that TNPs with longer sides showed higher levels of uptake into RAW264.7 and HeLa cells. On the other hand, in the case of SNPs, those with smaller diameters showed higher levels of uptake in both cells. Our results support the notion of a reverse size dependence of TNPs and SNPs in terms of cellular uptake. For HeLa cells, in particular, 20-fold more efficient internalization was observed for TNPs with longer sides (72 nm side length) compared to SNPs (66 nm) with a similar surface area. These results highlight the importance of the shape of nanomaterials on their interactions with cells and provide a useful guideline for the use of TNPs.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Animais , Ânions , Transporte Biológico , Células HeLa , Humanos , Ligantes , Camundongos , Microscopia Eletrônica de Transmissão , Células RAW 264.7
11.
Langmuir ; 31(14): 4054-62, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25796963

RESUMO

This study aims at the synthesis of Janus gold nanoparticles (Janus GNPs) with hydrophilic/hydrophobic faces by a simple ligand exchange reaction in an homogeneous system and at the elucidation of the self-assembled structures of the Janus GNPs in water. As hydrophilic surface ligands, we synthesized hexaethylene glycol (E6)-terminated thiolate ligands with C3, C7, or C11 alkyl chains, referred to as E6C3, E6C7, and E6C11, respectively. As a hydrophobic ligand, a butyl-headed thiolate ligand C4-E6C11, in which a C4 alkyl was introduced on the E6C11 terminus, was synthesized. The degree of segregation between the two ligands on the GNPs (5 nm in diameter) was examined by matrix-assisted laser desorption/ionization time-of fright mass spectrometry (MALDI-TOF MS) analysis. We found that the choice of immobilization methods, one-step or two-step addition of the two ligands to the GNP solution, crucially affects the degree of segregation. The two-step addition of a hydrophilic ligand (E6C3) followed by a hydrophobic ligand (C4-E6C11) produced a large degree of segregation on the GNPs, providing Janus-like GNPs. When dispersed in water, these Janus-like GNPs formed assemblies of ∼160 nm in diameter, whereas Domain GNPs, in which the two ligands formed partial domains on the surface, were precipitated even when the molar ratio of the hydrophilic ligand and the hydrophobic ligand on the surface of the NPs was almost 1:1. The assembled structure of the Janus-like GNPs in water was directly observed by pulsed coherent X-ray solution scattering using an X-ray free-electron laser, revealing irregular spherical structures with uneven surfaces.


Assuntos
Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Nanotecnologia , Água/química , Ligantes , Propriedades de Superfície
12.
ACS Nano ; 18(6): 4993-5002, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299996

RESUMO

We developed a substrate that enables highly sensitive and spatially uniform surface-enhanced Raman scattering (SERS). This substrate comprises densely packed gold nanoparticles (d-AuNPs)/titanium dioxide/Au film (d-ATA). The d-ATA substrate demonstrates modal ultrastrong coupling between localized surface plasmon resonances (LSPRs) of AuNPs and Fabry-Pérot nanocavities. d-ATA exhibits a significant enhancement of the near-field intensity, resulting in a 78-fold increase in the SERS signal for crystal violet (CV) compared to that of d-AuNP/TiO2 substrates. Importantly, high sensitivity and a spatially uniform signal intensity can be obtained without precise control of the shape and arrangement of the nanoscale AuNPs, enabling quantitative SERS measurements. Additionally, SERS measurements of rhodamine 6G (R6G) on this substrate under ultralow adsorption conditions (0.6 R6G molecules/AuNP) show a spatial variation in the signal intensity within 3%. These findings suggest that the SERS signal under modal ultrastrong coupling originates from multiple plasmonic particles with quantum coherence.

13.
Nanomaterials (Basel) ; 12(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35564130

RESUMO

Anisotropic gold nanodiscs (AuNDs) possess unique properties, such as large flat surfaces and dipolar plasmon modes, which are ideal constituents for the fabrication of plasmonic assemblies for novel and emergent functions. In this report, we present the thermo-responsive assembly and thermo-dynamic behavior of AuNDs functionalized with methyl-hexa(ethylene glycol) undecane-thiol as a thermo-responsive ligand. Upon heating, the temperature stimulus caused a blue shift of the plasmon peak to form a face-to-face assembly of AuNDs due to the strong hydrophobic and van der Waals interactions between their large flat surfaces. Importantly, AuNDs allowed for the incorporation of the carboxylic acid-terminated ligand while maintaining their thermo-responsive assembly ability. With regard to their reversible assembly/disassembly behavior in the thermal cycling process, significant rate-independent hysteresis, which is related to their thermo-dynamics, was observed and was shown to be dependent on the carboxylic acid content of the surface ligands. As AuNDs have not only unique plasmonic properties but also high potential for attachment due to the fact of their flat surfaces, this study paves the way for the exploitation of AuNDs in the development of novel functional materials with a wide range of applications.

14.
Nanoscale Adv ; 3(13): 3762-3769, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133023

RESUMO

Biomolecular systems actively control their local environment on a sub-nm scale via changes in molecular configuration from their flexible structures and derive emergent functions. Although this functional emergence based on local environmental control is attracting a great deal of attention in chemistry, it remains challenging to realize this artificially. Herein, we report the tuning of the thermo-responsive properties of oligo(ethylene glycol) (OEG) derivatives attached on gold nanoparticles via local environmental control not only by the hydrophobic moiety at their terminus but also by their molecular configuration. OEG-attached alkane thiol-modified AuNPs showed thermo-responsive assembly/disassembly in water through the hydration/dehydration of the OEG portions in a manner dependent both on the hydrophobicity at their terminus and the surface curvature of the core nanoparticles. Further, the assembly temperature (T A) was also tuned by ligand mixing with a non-thermo-responsive ligand with a shorter OEG length. Molecular dynamics simulations show that the distribution of the hydrophobic terminus in the normal direction along the gold surface varied in accordance with the surface curvature, indicating variations in molecular configuration. It is expected that a bent configuration could accelerate the thermo-responsiveness of OEG by allowing them greater accessibility to the hydrophobic terminus. Experimental and simulation results support the notion that local OEG density tuning by surface curvature or ligand mixing with a different OEG length leads to different degrees of accessibility to the hydrophobic terminus via changes in molecular configuration, promoting local environmental control-directed assembly temperature tuning.

15.
Langmuir ; 26(8): 5309-11, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20297778

RESUMO

A nearest-neighbor recognition analysis has been performed in cholesterol-rich and cholesterol-poor liposomes derived from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the presence of varying concentrations of chloroform. This analysis has yielded a fundamentally new, molecular-level view of the interaction of general anesthetics with lipid bilayers, which may be relevant to their biological action; that is, DPPC forms 1:1 complexes with CHCl(3) in both membranes in the fluid bilayer state.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Anestésicos Gerais/química , Clorofórmio/química , Colesterol/química , Lipossomos/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular
16.
Nanoscale Adv ; 2(9): 3798-3803, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132747

RESUMO

Nanoparticles exhibit a number of unique properties such as localized surface plasmon resonance (LSPR). As this LSPR is sensitive to geometrical or spatial conditions, the arrangement of nanoparticles, in particular the active arrangement of plasmonic structures, is an important issue. In this study, gold nanorod (GNR) arrays were prepared by GNR attachment on anionic polymer (DNA) brushes via electrostatic interactions and their stimuli-responsive changes in orientation were investigated. As a result, the orientation of GNR arrays on DNA brushes reversibly changed by the modulation of electrostatic interactions between GNRs and polymers via changes in the solution pH. As these extensive GNR arrays are prepared via easy bottom-up processes, GNR surface properties are easily tuned by simple modification, and DNAs could be replaced with various synthetic polymers, we believe that this study will lead to the development of next-generation materials and devices with actively tunable structures.

17.
Rev Sci Instrum ; 91(8): 083706, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872956

RESUMO

We developed micro-liquid enclosure arrays (MLEAs) for holding solution samples in coherent diffractive imaging (CDI) using x-ray free-electron lasers (XFELs). Hundreds of fully isolated micro-liquid enclosures are arranged in a single MLEA chip for efficient measurement, where each enclosure is destroyed after exposure to a single XFEL pulse. A semi-automated MLEA assembling system was also developed to enclose solution samples into MLEAs efficiently at high precision. We performed XFEL-based CDI experiments using MLEAs and imaged in-solution structures of self-assembled gold nanoparticles. The sample hit rate can be optimized by adjusting solution concentration, and we achieved a single-particle hit rate of 31%, which is not far from the theoretical upper limit of 37% derived from the Poisson statistics. MELAs allow us to perform CDI measurement under controlled solution conditions and will help reveal the nanostructures and dynamics of particles in solution.

18.
J Am Chem Soc ; 131(34): 12354-7, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19658396

RESUMO

Nearest-neighbor recognition measurements have been made for an exchangeable phospholipid (A) interacting with an exchangeable form of cholesterol (B) in host membranes derived from 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine and varying concentrations of cholesterol, 7beta-hydroxycholesterol (7beta-OH), and 25-hydroxycholesterol (25-OH). Whereas partial replacement of cholesterol with 7beta-OH strengthens the association between A and B, a similar substitution with 25-OH weakens this association. A model that accounts for this dichotomy, and the possible relevance of these findings to the cytotoxicity of 7beta-OH and to Alzheimer's disease are briefly discussed.


Assuntos
Doença de Alzheimer , Hidroxicolesteróis/química , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/toxicidade , Espectroscopia de Ressonância Magnética , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Modelos Químicos , Temperatura
19.
J Am Chem Soc ; 131(14): 5068-9, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19309135

RESUMO

The mixing behavior of an exchangeable phospholipid (A) with an exchangeable sterol (B) in host bilayers made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) containing varying concentrations of cholesterol has been examined via the nearest-neighbor recognition method. At low sterol concentrations (i.e., 2.5 mol %), the mixing between A and B is close to ideal. Incremental increases in the sterol concentration to 40 mol % led to net increases in the affinity between A and B. Similar mixing experiments that were carried out in the presence of chloroform showed a leveling effect, where moderate sterol-phospholipid affinity was observed in all cases. These results, together with the fact that the number of chloroform molecules that are absorbed per phospholipid is essentially constant and independent of the sterol content, support a model in which chloroform favors solvation of the phospholipids and a common membrane state is produced. Fluorescence measurements and Raman spectra have also shown that chloroform significantly loosens both cholesterol-poor and cholesterol-rich membranes made from DPPC. In a broader context, these results suggest a fundamentally new mechanism of anesthesia, where the anesthetic, by solvating the lipid components, profoundly changes the lateral organization of the lipid framework.


Assuntos
Clorofórmio/química , Colesterol/química , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Humanos , Lipossomos/química , Fluidez de Membrana , Modelos Químicos , Análise Espectral Raman
20.
Nanoscale Adv ; 1(5): 1731-1739, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134230

RESUMO

Active plasmonic tuning is an attractive but challenging research subject, leading to various promising applications. As one of the approaches, nanostructures are placed in or on soft matter, such as elastomers and gels, and their gap distances are tuned by the mechanical extension or volume change of the supporting matrices. As hydrogels possess various types of stimuli-responsiveness with large volume change and biocompatibility, they are good candidates as supporting materials for active nanostructure tuning. However, it remains unclear how accurately we can control their nanogap distance changes using polymer gels with a low deviation due to major difficulties in the precise observation of nanostructures on the gels. Here, we prepared gold arrays with sub-100 nm dots on silicon substrates by electron beam lithography and transferred them onto the hydrogel surface. Then, their nanopattern was actively tuned by the changes in gel size in water and their structural changes were confirmed by optical microscopy, microspectroscopy, and atomic force microscopy (AFM). Further, we successfully prepared ionic liquid (IL) gels with various degrees of swelling via solvent exchange. Scanning electron microscopy (SEM) observation of the IL gels provided clear pictures at nanoscale resolution. Finally, we calculated the plasmonic spectra using a finite difference time domain (FDTD) simulation based on the SEM images and compared them with the measured spectra. The results in this study totally support the notion that active changes in plasmonic nanodot patterns via volume changes in the hydrogel are quite homogenous on a several nanometer scale, making them ideal for precise active surface plasmon tuning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA