Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Sci Technol ; 58(23): 10240-10251, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38803057

RESUMO

Microplastics (MPs) in natural waters are heterogeneously mixed with other natural particles including algal cells and suspended sediments. An easy-to-use and rapid method for directly measuring and distinguishing MPs from other naturally present colloids in the environment would expedite analytical workflows. Here, we established a database of MP scattering and fluorescence properties, either alone or in mixtures with natural particles, by stain-free flow cytometry. The resulting high-dimensional data were analyzed using machine learning approaches, either unsupervised (e.g., viSNE) or supervised (e.g., random forest algorithms). We assessed our approach in identifying and quantifying model MPs of diverse sizes, morphologies, and polymer compositions in various suspensions including phototrophic microorganisms, suspended biofilms, mineral particles, and sediment. We could precisely quantify MPs in microbial phototrophs and natural sediments with high organic carbon by both machine learning models (identification accuracies over 93%), although it was not possible to distinguish between different MP sizes or polymer compositions. By testing the resulting method in environmental samples through spiking MPs into freshwater samples, we further highlight the applicability of the method to be used as a rapid screening tool for MPs. Collectively, this workflow can be easily applied to a diverse set of samples to assess the presence of MPs in a time-efficient manner.


Assuntos
Citometria de Fluxo , Aprendizado de Máquina , Microplásticos , Suspensões , Monitoramento Ambiental/métodos , Poluentes Químicos da Água
2.
Environ Sci Technol ; 58(17): 7588-7599, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624040

RESUMO

Adsorption of biomacromolecules onto polymer surfaces, including microplastics (MPs), occurs in multiple environmental compartments, forming an ecocorona. Environmental DNA (eDNA), genetic material shed from organisms, can adsorb onto MPs which can potentially either (1) promote long-range transport of antibiotic resistant genes or (2) serve to gain insights into the transport pathways and origins of MPs by analyzing DNA sequences on MPs. However, little is known about the capacity of MPs to adsorb eDNA or the factors that influence sorption, such as polymer and water chemistries. Here we investigated the adsorption of extracellular linear DNA onto a variety of model MP fragments composed of three of the most environmentally prevalent polymers (polyethylene, polyethylene terephthalate, and polystyrene) in their pristine and photochemically weathered states. Batch adsorption experiments in a variety of water chemistries were complemented with nonlinear modeling to quantify the rate and extent of eDNA sorption. Ionic strength was shown to strongly impact DNA adsorption by reducing or inhibiting electrostatic repulsion. Polyethylene terephthalate exhibited the highest adsorption capacity when normalizing for MP specific surface area, likely due to the presence of ester groups. Kinetics experiments showed fast adsorption (majority adsorbed under 30 min) before eventually reaching equilibrium after 1-2 h. Overall, we demonstrated that DNA quickly binds to MPs, with pseudo-first- and -second-order models describing adsorption kinetics and the Freundlich model describing adsorption isotherms most accurately. These insights into DNA sorption onto MPs show that there is potential for MPs to act as vectors for genetic material of interest, especially considering that particle-bound DNA typically persists longer in the environment than dissolved DNA.


Assuntos
Microplásticos , Adsorção , Microplásticos/química , DNA Ambiental , Polímeros/química , Água/química , DNA/química
3.
Environ Sci Technol ; 57(18): 7263-7272, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37104680

RESUMO

Multiple analytical techniques to measure microplastics (MPs) in complex environmental matrices are currently under development, and which is most suited often depends on the aim(s) of the research question and the experimental design. Here, we further broaden the suite of possible techniques which can directly detect MPs in suspension while differentiating the carbon contained in MPs from other natural particles and dissolved organic carbon (DOC). Single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) is well suited to measuring particles at trace concentrations, and the use of ICP time-of-flight-MS (ICP-TOFMS) allows one to simultaneously monitor the entire elemental spectrum to assess the full elemental composition of individual particles through developing elemental fingerprints. Because carbon is not detected in a standard operation mode with icp TOF, a dedicated optimization was necessary. Subsequently, to assess the feasibility of monitoring 12C particle pulses for the detection of MPs in more complex natural waters, two proof-of-principle studies were performed to measure MPs in waters with environmentally relevant DOC backgrounds (≤20 mg/L) and in the presence of other carbon containing particles, here, algae. Elevated DOC concentrations did not impact the enumeration of particles in suspension, and individual MPs, single algae, and aggregates of MPs and algae were clearly distinguished. The simultaneous identification of different analytes of interest allows for multiplexed sp-ICP-TOFMS experiments utilizing elemental fingerprinting of particles and is a step forward in quantifying MPs in aqueous environmental samples.


Assuntos
Microplásticos , Plásticos , Carbono , Análise Espectral
4.
Environ Sci Technol ; 57(39): 14707-14716, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37722069

RESUMO

Plastic fate in freshwater systems is dependent on particle size, morphology, and physicochemical surface properties (e.g., charge, surface roughness, and hydrophobicity). Environmental aging processes, such as photochemical weathering and eco-corona formation due to dissolved organic matter (DOM) adsorption on plastic surfaces, can alter their physicochemical properties, affecting fate and transport. While plastic aging has been studied from a materials science perspective, its specific implications in environmental contexts remain less understood. Although photochemical weathering and eco-corona formation occur simultaneously in the environment, in this work, we systematically assessed the effects of photochemical weathering on the physicochemical properties of polymers (polyethylene, polypropylene, polyethylene terephthalate, and polystyrene) and how this influences the adsorption of DOMs (Suwannee River humic acid, fulvic acid, and natural organic matter) relative to pristine polymers. Pristine polymers initially had different and distinct physicochemical surface properties, but upon aging, they became more similar in terms of surface properties. Photochemical weathering resulted in a decrease in polymer film thickness, an increase in surface roughness, and hydrophilicity. DOM adlayers on the polymer surfaces resulted in more comparable wettability, effectively masking the initial polymer properties. Collectively, this study explores the physiochemical changes polymers undergo in laboratory studies mimicking environmental conditions. Understanding these changes is the initial step to rationalizing and predicting processes and interactions such as heteroaggregation that dictate the fate of plastics in the environment.


Assuntos
Matéria Orgânica Dissolvida , Polímeros , Polímeros/química , Adsorção , Poliestirenos , Substâncias Húmicas/análise , Plásticos
5.
Environ Sci Technol ; 56(23): 16716-16725, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36383416

RESUMO

Nanoplastics (NPs; <1 µm) have greater availability to marine organisms than microplastics (1-5000 µm). Understanding NP uptake and depuration in marine organisms intended for human consumption is imperative for food safety, but until now it has been limited due to analytical constraints. Oysters (Crassostrea gigas) were exposed to polystyrene NPs doped with palladium (Pd), allowing the measurements of their uptake into tissues by inductively coupled plasma mass spectrometry (ICP-MS) combined with electron microscopy. Oysters were exposed for 6 days (d) to "Smooth" or "Raspberry" NPs, followed by 30 d of depuration with the aim of assessing the NP concentration in C. gigas following exposure, inferring the accumulation and elimination rates, and understanding the clearance of Pd NPs during the depuration period. After 6 d, the most significant accumulation was found in the digestive gland (106.6 and 135.3 µg g-1 dw, for Smooth and Raspberry NPs, respectively) and showed the most evident depuration (elimination rate constant KSmooth = 2 d-1 and KRaspberry = 0.2 d-1). Almost complete depuration of the Raspberry NPs occurred after 30 d. While a post-harvesting depuration period of 24-48 h for oysters could potentially reduce the NP content by 75%, more research to validate these findings, including depuration studies of oysters from the field, is required to inform practices to reduce human exposure through consumption.


Assuntos
Crassostrea , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos , Poliestirenos
6.
Environ Sci Technol ; 55(12): 8001-8009, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061503

RESUMO

Fiber fragments are one of the dominant types of microplastics in environmental samples, suggesting that synthetic textiles are a potential source of microplastics to the environment. Whereas the release of microplastics during washing of textiles is already well studied, much less is known about the release during abrasion processes. The abrasion of textiles may induce fibrillation of fibers and therefore result in the formation of much finer fiber fragments. The aim of this study was to investigate the influence of abrasion of synthetic textiles on the formation of microplastic fibers and fibrils. Fleece and interlock textile swatches made of polyester were abraded using abrasion tests with a Martindale tester. The microplastic fibers and fibrils formed during abrasion were extracted from the textiles and characterized in terms of number, length, and diameter. The microplastic fibers demonstrated the same diameter than the fibers found in the textiles (fleece: 12.3 µm; interlock: 12.7 µm), while fibrils with a much smaller diameter (fleece: 2.4 µm; interlock: 4.9 µm) were also found. The number of fibrils formed during abrasion in both textiles was higher than the number of microplastic fibers. The majority of the extracted microplastic fibers had a length between 200 and 800 µm, while most fibrils were between 30 and 150 µm, forming two distinct fiber fragment morphologies. The number of microplastic fibers formed during abrasion was 5 to 30 times higher than the number of microplastic fibers that could be extracted from non-abraded samples. The number of fibrils increased after abrasion by more than a factor of 200 for both fabric types. The fibrils formed during abrasion have diameters that fall within the inhalable size for airborne particles. The potential release of fibrils into air during wear of textiles thus raises questions about the human exposure to these materials. Since the Martindale tester can simulate a daily application scenario of textiles over a prolonged period only in a limited way, future studies are needed to establish the correlation between the test results with a real-world scenario.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Poliésteres , Têxteis , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 55(24): 16423-16433, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34878261

RESUMO

Plastic pollution is increasingly perceived as an emerging threat to terrestrial environments, but the spatial and temporal dimension of plastic exposure in soils is poorly understood. Bioturbation displaces microplastics (>1 µm) in soils and likely also nanoplastics (<1 µm), but empirical evidence is lacking. We used a combination of methods that allowed us to not only quantify but to also understand the mechanisms of biologically driven transport of nanoplastics in microcosms with the deep-burrowing earthworm Lumbricus terrestris. We hypothesized that ingestion and subsurface excretion drives deep vertical transport of nanoplastics that subsequently accumulate in the drilosphere, i.e., burrow walls. Significant vertical transport of palladium-doped polystyrene nanoplastics (diameter 256 nm), traceable using elemental analysis, was observed and increased over 4 weeks. Nanoplastics were detected in depurated earthworms confirming their uptake without any detectable negative impact. Nanoplastics were indeed enriched in the drilosphere where cast material was visibly incorporated, and the reuse of initial burrows could be monitored via X-ray computed tomography. Moreover, the speed of nanoplastics transport to the deeper soil profile could not be explained with a local mixing model. Earthworms thus repeatedly ingested and excreted nanoplastics in the drilosphere calling for a more explicit inclusion of bioturbation in nanoplastic fate modeling under consideration of the dominant mechanism. Further investigation is required to quantify nanoplastic re-entrainment, such as during events of preferential flow in burrows.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos , Plásticos , Solo , Poluentes do Solo/análise
8.
Environ Sci Technol ; 54(2): 911-920, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31838852

RESUMO

Wastewater treatment plants have been identified as important hubs for small particulate plastic, down to the nanometer scale, from urban areas to the environment. The reuse of sludge as fertilizer in agricultural practices can lead to accumulation of plastic in the soil. In this study, nanoplastic particles and microplastic fibers were synthesized with a passive inorganic tracer to aid in faster and more quantitative analysis using inductively coupled plasma mass spectrometry (ICP-MS). Using the anaerobic digestate of a pilot wastewater treatment plant spiked with metal-doped plastic, the excess sludge was dewatered, ensuring realistic associations between sludge and plastic. The resulting sludge cake was affixed atop an unsaturated porous-medium column of glass beads to assess: (i) the release of particulate plastic from the sludge, and (ii) the accumulation and mobility of plastic and organic matter through the column (analogous to a soil). A total of three particulate plastic treatments were assessed, in triplicate, where the plastic and mobile organic fractions were monitored for 14 pore water volumes. Due to size-limited transport, low deattachment from the sludge and reduced mobility through the column were found for microplastic fibers (>95% retention). However, cotransport between the mobile organic fraction and nanoplastic particles was observed, with 50% of both retained in the column. These results contribute to the understanding of the fate of particulate plastics and to assessing the associated environmental risks of particle mobility and percolation, particularly for nanoplastics.


Assuntos
Plásticos , Esgotos , Microplásticos , Porosidade , Solo , Águas Residuárias
9.
Environ Sci Technol ; 54(8): 4847-4855, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32250104

RESUMO

Microplastic fibers (MPFs) have been found to be a major form of microplastics in freshwaters, and washing of synthetic textiles has been identified as one of their main sources. The aim of this work was to use a panel of 12 different textiles of representative fibers and textile types to investigate the source(s) of the MPF during washing. Using standardized washing tests, textile swatches tailored using five different cutting/sewing methods were washed up to 10 times. The MPF quantity and fiber length were determined using image analysis. The 12 textiles demonstrated great variability in MPF release, ranging from 210 to 72,000 MPF/g textile per wash. The median MPF length ranged from 165 to 841 µm. The number of released MPF was influenced by the cutting method, where scissor-cut samples released 3-21 times higher numbers of MPF than the laser-cut samples. The textiles with mechanically processed surfaces (i.e., fleece) released significantly more (p-value < 0.001) than the textiles with unprocessed surfaces. For all textiles, the MPF release decreased with repeated wash cycles, and a small continuous fiber release was observed after 5-6 washings, accompanied by a slight increase in the fiber length. The decrease in the number of MPF released is likely caused by depletion of the production-inherited MPFs trapped within the threads or the textile structure. The comparison of MPF release from laser-cut samples, which had sealed edges, and the other cutting methods allowed us to separate the contributions of the edge- and surface-sourced fibers from the textiles to the total release. On an average, 84% (range 49-95%) of the MPF release originated from the edges, highlighting the importance of the edge-to-surface ratio when comparing different release studies. The large contribution of the edges to the total release offers options for technical solutions which have the possibility to control MPF formation throughout the textile manufacturing chain by using cutting methods which minimize MPF formation.


Assuntos
Plásticos , Poliésteres , Microplásticos , Têxteis
11.
Nanotechnology ; 28(7): 072001, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28074782

RESUMO

Assessing the risks of manufactured nanomaterials (MNM) has been almost exclusively focused on the pristine, as-produced materials with far fewer studies delving into more complex, real world scenarios. However, when considering a life-cycle perspective, it is clear that MNM released from commercial products during manufacturing, use and disposal are far more relevant both in terms of more realistic environmental fate and transport as well as environmental risk. The quantity in which the particles are released and their (altered) physical and chemical form should be identified and it is these metrics that should be used to assess the exposure and hazard the materials pose. The goal of this review is to (1) provide a rationale for using a life-cycle based approach when dealing with MNM transformations, (2) to elucidate the different chemical and physical forces which age and transform MNM and (3) assess the pros and cons of current analytical techniques as they pertain to the measurement of aged and transformed MNM in these complex release scenarios. Specifically, we will describe the possible transformations common MNM may undergo during the use or disposal of nano-products based on how these products will be used by the consumer by taking stock of the current nano-enabled products on the market. Understanding the impact of these transformations may help forecast the benefits and/or risks associated with the use of products containing MNM.

12.
Environ Sci Technol ; 51(12): 7036-7046, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28537711

RESUMO

Microplastic fibers make up a large proportion of microplastics found in the environment, especially in urban areas. There is good reason to consider synthetic textiles a major source of microplastic fibers, and it will not diminish since the use of synthetic fabrics, especially polyester, continues to increase. In this study we provide quantitative data regarding the size and mass of microplastic fibers released from synthetic (polyester) textiles during simulated home washing under controlled laboratory conditions. Consideration of fabric structure and washing conditions (use of detergents, temperature, wash duration, and sequential washings) allowed us to study the propensity of fiber shedding in a mechanistic way. Thousands of individual fibers were measured (number, length) from each wash solution to provide a robust data set on which to draw conclusions. Among all the variables tested, the use of detergent appeared to affect the total mass of fibers released the most, yet the detergent composition (liquid or powder) or overdosing of detergent did not significantly influence microplastic release. Despite different release quantities due to the addition of a surfactant (approximately 0.025 and 0.1 mg fibers/g textile washed, without and with detergent, respectively), the overall microplastic fiber length profile remained similar regardless of wash condition or fabric structure, with the vast majority of fibers ranging between 100 and 800 µm in length irrespective of wash cycle number. This indicates that the fiber staple length and/or debris encapsulated inside the fabric from the yarn spinning could be directly responsible for releasing stray fibers. This study serves as a first look toward understanding the physical properties of the textile itself to better understand the mechanisms of fiber shedding in the context of microplastic fiber release into laundry wash water.


Assuntos
Plásticos , Poliésteres , Poluentes da Água , Detergentes , Meio Ambiente , Lavanderia , Têxteis
13.
Environ Sci Technol ; 51(10): 5611-5621, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28438022

RESUMO

Numerous nanometrology techniques have been developed in recent years to determine the size, concentration, and a number of other characteristics of engineered nanomaterials (ENM) in environmental matrices. Among the many available techniques, nanoparticle tracking analysis (NTA) can measure individual particles to create a size distribution and measure the particle number. Therefore, we explore the possibility to use these data to calculate the particle mass distribution. Additionally, we further developed the NTA methodology to explore its suitability for analysis of ENM in complex matrices by measuring ENM agglomeration and sedimentation in municipal solid waste incineration landfill leachates over time. 100 nm Au ENM were spiked into DI H2O and synthetic and natural leachates. We present the possibility of measuring ENM in the presence of natural particles based on differences in particle refractivity indices, delineate the necessity of creating a calibration curve to adjust the given NTA particle number concentration, and determine the instruments linear range under different conditions. By measuring the particle size and the particle number distribution, we were able to calculate the ENM mass remaining in suspension. By combining these metrics together with transmission electron microscopy (TEM) analyses, we could assess the extent of both homo- and heteroagglomeration as well as particle sedimentation. Reporting both size and mass based metrics is common in atmospheric particle measurements, but now, the NTA can give us the possibility of applying the same approach also to aqueous samples.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Incineração , Nanoestruturas , Tamanho da Partícula
14.
Environ Sci Technol ; 51(5): 2854-2863, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28157288

RESUMO

The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental emissions. Material flow models (MFA) have been used to provide predicted environmental emissions but most current nano-MFA models consider neither the rapid development of ENM production nor the fact that a large proportion of ENM are entering an in-use stock and are released from products over time (i.e., have a lag phase). Here we use dynamic probabilistic material flow modeling to predict scenarios of the future flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to environmental compartments and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. In these scenarios, we estimate likely future amounts if the use and distribution of ENM in products continues along current trends (i.e., a business-as-usual approach) and predict the effect of hypothetical trends in the market development of nanomaterials, such as the emergence of a new widely used product or the ban on certain substances, on the flows of nanomaterials to the environment in years to come. We show that depending on the scenario and the product type affected, significant changes of the flows occur over time, driven by the growth of stocks and delayed release dynamics.


Assuntos
Poluentes Ambientais , Nanoestruturas , Meio Ambiente , Modelos Teóricos , Solo
15.
Environ Sci Technol ; 50(11): 5790-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27128769

RESUMO

The scientific understanding of nanoparticle (NP) release and transformations they undergo during the product life cycle is hampered by the narrow scope of many research endeavors in terms of both breadth of variables and completeness of analytical characterization. We conducted a comprehensive suite of studies to reveal overarching mechanisms and parameters for nanosilver transformations either still adhered to the fabric or when released after washing. Laboratory prepared nanoenhanced fabrics were investigated: three Ag variants and one Au used as an unreactive reference to separate mechanical from chemical releases. Sequential combinations of sunlight irradiation and/or washing in seven different detergent formulations was followed by NP characterization divided into two groups: (1) dissolved and particulate matter in the wash solutions and (2) the fraction that remained on the fabric. Analytical techniques included spICP-MS, XANES, TEM, SEM, and total metals analysis of fabric digests and wash water filtrates. Sunlight irradiation stabilizes metallic Ag upon washing. Detergents containing oxidizing agents assisted with Ag particle release but not Au NPs, inferring additional chemical mechanisms. While particle size played some role, the NP capping agent/fabric binder combination was a key factor in release. When particles were released, little alteration in size was observed. The use of well-controlled fabrics, unreactive reference materials, and a life-cycle based experimental regime are paramount to understanding changes in Ag speciation and release upon use of nanoenhanced textiles.


Assuntos
Prata/química , Luz Solar , Nanopartículas Metálicas/química , Tamanho da Partícula , Têxteis
16.
Environ Sci Technol ; 49(16): 9665-73, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26200479

RESUMO

Engineered nanoparticle (ENP) life cycles are strongly dependent on the life-cycle of the nanoenhanced products in which they are incorporated. An important phase for ENP associated with textiles is washing. Using a set of liquid and powdered commercially available detergents that span a wide range of different chemistries, washing studies were performed with one "standard" nanoparticle suspended in wash solution to systematically investigate (changes to) particle size distribution, dissolution, reprecipitation (i.e., "new" particle formation), and complexation to particulate matter. Au ENPs were used as a "tracer" through the system. TEM and EDX analysis were performed to observe morphological and chemical changes to the particles, and single-particle ICP-MS was used to build a size distribution of particles in solution. Varying the washing solution chemistry was found to dictate the extent and rate of dissolution, particle destruction, surface chemistry change(s), and new particle formation. Detergent chemistry, dominated by oxidizing agents, was a major factor. The detergent form (i.e., powder vs liquid) was the other decisive factor, with powder forms providing available surfaces for precipitation and sorption reactions. Control experiments with AgNO3 indicated metallic Ag particles formed during the washing process from dissolved Ag, implying not all Ag-NPs observed in a textile washing study are indicative of released Ag-ENPs but can also be the result of sequential dissolution/reduction reactions.


Assuntos
Detergentes/química , Lavanderia/métodos , Nanopartículas/análise , Nanopartículas/química , Tamanho da Partícula , Material Particulado , Soluções , Têxteis
17.
Nat Water ; 2(6): 541-552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912368

RESUMO

Understanding the impacts of microplastics (MPs) on aqueous environments requires understanding their transport dynamics and how their presence affects other natural processes and cycles. In this context, one aspect to consider is how MPs interact with freshwater snow (FWS), a mixture of algae and natural particles. FWS is one of the primary drivers of the flux of organic matter from the water surface to the bottom sediment, where zooplankton, diurnal migration, fish faecal pellets settling and turbulent mixing can also play prominent roles. Understanding how MPs and FWS heteroaggregation affects their respective settling velocities is important to assess not only MPs fate and transport but also their ecological impacts by altering FWS deposition and thereby nutrient cycling. In this present study, we obtained a mechanistic understanding of the processes controlling MPs settling dynamics and heteroaggregation with FWS and the subsequent impacts on the settling rates of both MPs and ballasted FWS. Here we used a plexiglass column equipped with a stereoscopic camera system to track the settling velocities of (1) MPs of various compositions, densities and morphologies, (2) FWS flocs and (3) MP-FWS agglomerates. For each experimental set, thousands of particles were tracked over a series of image sequences. We found that agglomerates with high-density MPs settled at least twofold faster than FWS alone, implying a much smaller residence time in the water column, except for cases with MP fibres or low-density plastics. These findings will help to refine MP fate models and, while contingent on MPs number, may impact biogeochemical cycles by changing the flux of nutrients contained in FWS to the sediment.

18.
NanoImpact ; 34: 100510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38759729

RESUMO

To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.


Assuntos
Microplásticos , Nanoestruturas , Nanoestruturas/química , Humanos , Plásticos/química
19.
Microplast nanoplast ; 4(1): 20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39416765

RESUMO

Predicting the response of aquatic species to environmental contaminants is challenging, in part because of the diverse biological traits within communities that influence their uptake and transfer of contaminants. Nanoplastics are a contaminant of growing concern, and previous research has documented their uptake and transfer in aquatic food webs. Employing an established method of nanoplastic tracking using metal-doped plastics, we studied the influence of biological traits on the uptake of nanoplastic from water and diet in freshwater predators through two exposure assays. We focused on backswimmers (Anisops wakefieldi) and damselfly larvae (Xanthocnemis zealandica) - two freshwater macroinvertebrates with contrasting physiological and morphological traits related to feeding and respiration strategies. Our findings reveal striking differences in nanoplastic transfer dynamics: damselfly larvae accumulated nanoplastics from water and diet and then efficiently eliminated 92% of nanoplastic after five days of depuration. In contrast, backswimmers did not accumulate nanoplastic from either source. Differences in nanoplastic transfer dynamics may be explained by the contrasting physiological and morphological traits of these organisms. Overall, our results highlight the importance and potential of considering biological traits in predicting transfer of nanoplastics through aquatic food webs. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-024-00096-4.

20.
Environ Sci Nano ; 11(8): 3574-3584, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39131542

RESUMO

Anthropogenic contaminants can place significant stress on vegetation, especially when they are taken up into plants. Plastic pollution, including nanoplastics (NPs), could be detrimental to tree functioning, by causing, for example, oxidative stress or reducing photosynthesis. While a number of studies have explored the capacity of plants to take up NPs, few have simultaneously assessed the functional damage due to particulate matter uptake. To quantify NPs uptake by tree roots and to determine whether this resulted in subsequent physiological damage, we exposed the roots of two tree species with different water use strategies in hydroponic cultures to two concentrations (10 mg L-1 and 30 mg L-1) of model metal-doped polystyrene NPs. This approach allowed us to accurately quantify low concentrations of NPs in tissues using standard approaches for metal analysis. The two contrasting tree species included Norway spruce (Picea abies [L.] Karst), a water conservative tree, and wild service tree (Sorbus torminalis [L.] Crantz), an early successional tree with a rather water spending strategy. At both exposure concentrations and at each of the experimental time points (two and four weeks), NPs were highly associated and/or concentrated inside the tree roots. In both species, maximum concentrations were observed after 2 weeks in the roots of the high concentration (HC) treatment (spruce: 2512 ± 304 µg NPs per g DW (dry weight), wild service tree: 1190 ± 823 µg NPs per g DW). In the aboveground organs (stems and leaves or needles), concentrations were one to two orders of magnitude lower than in the roots. Despite relatively similar NPs concentrations in the tree aboveground organs across treatments, there were different temporal impacts on tree physiology of the given species. Photosynthetic efficiency was reduced faster (after 2 weeks of NPs exposure) and more intensively (by 28% in the HC treatment) in wild service trees compared to Norway spruce (ca. 10% reduction only after 4 weeks). Our study shows that both, evergreen coniferous as well as deciduous broadleaf tree species are negatively affected in their photosynthesis by NPs uptake and transport to aboveground organs. Given the likelihood of trees facing multiple, concurrent stressors from anthropogenic pollution and climate change, including the impact of NPs, it is crucial to consider the cumulative effects on vegetation in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA