Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Appl Clin Med Phys ; 25(8): e14373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38696704

RESUMO

PURPOSE: Lateral response artifact (LRA) is caused by the interaction between film and flatbed scanner in the direction perpendicular to the scanning direction. This can significantly affect the accuracy of patient-specific quality assurance (QA) in cases involving large irradiation fields. We hypothesized that by utilizing the central area of the flatbed scanner, where the magnitude of LRA is relatively small, the LRA could be mitigated effectively. This study proposes a practical solution using the image-stitching technique to correct LRA for patient-specific QA involving large irradiation fields. METHODS: Gafchromic™ EBT4 film and Epson Expression ES-G11000 flatbed scanner were used in this study. The image-stitching algorithm requires a spot between adjacent images to combine them. The film was scanned at three locations on a flatbed scanner, and these images were combined using the image-stitching technique. The combined film dose was then calculated and compared with the treatment planning system (TPS)-calculated dose using gamma analysis (3%/2 mm). Our proposed LRA correction was applied to several films exposed to 18 × 18 cm2 open fields at doses of 200, 400, and 600 cGy, as well as to four clinical Volumetric Modulated Arc Therapy (VMAT) treatment plans involving large fields. RESULTS: For doses of 200, 400, and 600 cGy, the gamma analysis values with and without LRA corrections were 95.7% versus 67.8%, 95.5% versus 66.2%, and 91.8% versus 35.9%, respectively. For the clinical VMAT treatment plan, the average pass rate ± standard deviation in gamma analysis was 94.1% ± 0.4% with LRA corrections and 72.5% ± 1.5% without LRA corrections. CONCLUSIONS: The effectiveness of our proposed LRA correction using the image-stitching technique was demonstrated to significantly improve the accuracy of patient-specific QA for VMAT treatment plans involving large irradiation fields.


Assuntos
Algoritmos , Artefatos , Dosimetria Fotográfica , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos
2.
J Appl Clin Med Phys ; 24(8): e13992, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086445

RESUMO

The purpose of this study was to investigate the impact of scanning orientation and lateral response artifact (LRA) effects on the dose-response of EBT4 films and compare it with that of EBT3 films. Dose-response curves for EBT3 and EBT4 films in red-green-blue (RGB) color channels in portrait orientation were created for unexposed films and for films exposed to doses ranging from 0 to 1 000 cGy. Portrait and landscape orientations of the EBT3 and EBT4 films were scanned to investigate the scanning orientation effect in the red channel. EBT3 and EBT4 films were irradiated to assess the LRA in the red channel using a field size of 15 × 15 cm2 and delivered doses of 200, 400, and 600 cGy. Films were scanned at the edge of the scanner bed, and the measured doses were compared with the treatment planning system (TPS) calculated doses at a position 100 mm lateral to the scanner center. At a dose of 200 cGy, the differences in optical density (OD) in the red, green, and blue color channels between EBT3 and EBT4 films were 0.035 (24.8%), 0.042 (49.7%), and 0.022 (64.4%), respectively. The EBT4 film slightly improved the scanning orientation compared to the EBT3 film. The OD difference in the different scanning orientations for the EBT3 and EBT4 films was 0.015 (6.8%) and 0.007 (3.9%), respectively, at a dose of 200 cGy. This is equivalent to a 20 or 10 cGy variation at a dose of 200 cGy. Compared with the TPS calculation, the measurement doses for EBT3 and EBT4 films irradiated at 200 cGy were approximately 16% and 13% higher, respectively, at the 100 mm off-centered position. The EBT4 film showed an improvement concerning the impact of LRA compared with the EBT3 film. This study demonstrated that the response of EBT4 film to a dose in the blue channel was less sensitive and showed an improvement in the scanning orientation and LRA effects.


Assuntos
Artefatos , Dosimetria Fotográfica , Humanos , Calibragem
3.
J Appl Clin Med Phys ; 24(2): e13835, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36316723

RESUMO

This study aims to evaluate the effect of different air computed tomography (CT) numbers of the image value density table (IVDT) on the retrospective dose calculation of head-and-neck (HN) radiotherapy using TomoTherapy megavoltage CT (MVCT) images. The CT numbers of the inside and outside air and each tissue-equivalent plug of the "Cheese" phantom were obtained from TomoTherapy MVCT. Two IVDTs with different air CT numbers were created and applied to MVCT images of the HN anthropomorphic phantom and recalculated by Planned Adaptive to verify dose distribution. We defined the recalculation dose with MVCT images using both inside and outside air of the IVDT as IVDT MVCT inair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{inair}}$ and IVDT MVCT outair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{outair}}$ , respectively. Treatment planning doses calculated on kVCT images were compared with those calculated on MVCT images using two different IVDT tables, namely, IVDT MVCT inair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{inair}}$ and IVDT MVCT outair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{outair}}$ . The difference between average MVCT numbers ±1 standard deviation on inside and outside air of the calibration phantom was 65 ± 36 HU. This difference in MVCT number of air exceeded the recommendation lung tolerance for dose calculation error of 2%. The dose differences between the planning target volume (PTV): D98% , D50% , D2% and the organ at risk (OAR): Dmax , Dmean recalculated by IVDT MVCT inair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{inair}}$ and IVDT MVCT outair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{outair}}$ using MVCT images were a maximum of 0.7% and 1.2%, respectively. Recalculated doses to the PTV and OAR with MVCT showed that IVDT MVCT outair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{outair}}$ was 0.5%-0.7% closer to the kVCT treatment planning dose than IVDT MVCT inair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{inair}}$ . This study showed that IVDT MVCT outair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{outair}}$ was more accurate than IVDT MVCT inair ${\mathrm{IVDT}}_{\mathrm{MVCT}}^{\mathrm{inair}}$ in recalculating the dose HN cases of MVCT using TomoTherapy.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico
4.
J Appl Clin Med Phys ; 22(6): 274-280, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34028970

RESUMO

Thermoplastic masks, used along with surgical masks, enable immobilization methods to reduce the risk of infection in patients undergoing intracranial stereotactic radiosurgery and stereotactic radiotherapy (SRS/SRT) during the COVID-19 crisis. The purpose of this study was to investigate the feasibility of thermoplastic mask immobilization with a surgical mask using an ExacTrac system. Twelve patients each with brain metastases were immobilized using a thermoplastic mask and a surgical mask and only a thermoplastic mask. Two x-ray images were acquired to correct (XC) and verify (XV) the patient's position at a couch angle of 0°. Subsequently, the XC and XV images were acquired at each planned couch angle for non-coplanar beams. When the position errors were detected after couch rotation for non-coplanar beams, the errors were corrected at each planned couch angle until a clinically acceptable tolerance was attained. The position errors in the translational and rotational directions (vertical, lateral, longitudinal, pitch, roll, and yaw) were retrospectively investigated using data from the ExacTrac system database. A standard deviation of XC translational and rotational position errors with and without a surgical mask in the lateral (1.52 vs 2.07 mm), longitudinal (1.59 vs 1.87 mm), vertical (1.00 vs 1.73 mm), pitch (0.99 vs 0.79°), roll (1.24 vs 0.68°), and yaw (1.58 vs 0.90°) directions were observed at a couch angle of 0°. Most of patient positioning errors were less than 1.0 mm or 1.0° after the couch was rotated to the planned angle for non-coplanar beams. The overall absolute values of the translational and rotational XV position errors with and without the surgical mask were less than 0.5 mm and 0.5°, respectively. This study showed that a thermoplastic mask with a surgical mask is a feasible immobilization technique for brain SRS/SRT patients using the ExacTrac system.


Assuntos
Neoplasias Encefálicas , COVID-19 , Radiocirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Imobilização , Máscaras , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia/prevenção & controle , Estudos Retrospectivos , SARS-CoV-2 , Incerteza
5.
Rep Pract Oncol Radiother ; 26(6): 1035-1044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992878

RESUMO

BACKGROUND: We investigated variations in liver position relative to the vertebral bone for liver cancer treated with stereotactic body radiation therapy under expiratory phase breath-hold (BH) for treatment with contrast-enhanced-computed tomography (CECT), non-CECT, and cone-beam computed tomography (CBCT). MATERIALS AND METHODS: Seventeen consecutive patients using a contrast enhancement (CE) agent for the CT simulation session for this retrospective study were selected. The first computed tomography (CT) scan without the use of CE agent in the expiratory phase was used for treatment planning (pCT). The remaining three CT scans without a CE agent under expiratory phase BH were acquired successively without repositioning to evaluate the intra-fraction variation in liver position. Furthermore, a three-phase CT scan (arterial, portal, and late phases) accompanied by a CE agent under expiratory phase BH was acquired for target delineation. CBCT scans without the use of a CE agent under expiratory phase BH were acquired for treatment. Inter-fractional variations (non-CECT or CECT) in liver position were measured using the difference between CBCT and pCT or each 3 phase CECT images, respectively. RESULTS: The average ± standard deviations for intrafractional, non-CECT interfractional variations, and CECT interfractional variations were 1.0 ± 1.3, 2.5 ± 2.6, and 6.4 ± 6.4 mm, respectively, in the craniocaudal (CC) direction. Intra- and inter-fractional variations in liver position were relatively small for non-CECT. However, significant inter-fractional liver position variations in CECT were observed in the expiratory phase BH. The position of the liver should be carefully considered when applying CECT images for image-guided radiotherapy.

6.
Rep Pract Oncol Radiother ; 25(3): 376-381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322176

RESUMO

PURPOSE: We investigated the feasibility of robust optimization for volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) for liver cancer in comparison with planning target volume (PTV)-based optimized plans. Treatment plan quality, robustness, complexity, and accuracy of dose delivery were assessed. METHODS: Ten liver cancer patients were selected for this study. PTV-based optimized plans with an 8-mm PTV margin and robust optimized plans with an 8-mm setup uncertainty were generated. Plan perturbed doses were evaluated using a setup error of 8 mm in all directions from the isocenter. The dosimetric comparison parameters were clinical target volume (CTV) doses (D98%, D50%, and D2%), liver doses, and monitor unit (MU). Plan complexity was evaluated using the modulation complexity score for VMAT (MCSv). RESULTS: There was no significant difference between the two optimizations with respect to CTV doses and MUs. Robust optimized plans had a higher liver dose than did PTV-based optimized plans. Plan perturbed dose evaluations showed that doses to the CTV for the robust optimized plans had small variations. Robust optimized plans were less complex than PTV-based optimized plans. Robust optimized plans had statistically significant fewer leaf position errors than did PTV-based optimized plans. CONCLUSIONS: Comparison of treatment plan quality, robustness, and plan complexity of both optimizations showed that robust optimization could be feasibile for VMAT of liver cancer.

7.
Artigo em Japonês | MEDLINE | ID: mdl-32307365

RESUMO

In order to correct the lateral effect caused by the light source of the flatbed scanner in the Gafchromic film EBT3, the usefulness of the correction method using the average value of the correction coefficient considering the scan directions were evaluated. EBT3 was scanned from four directions to measure the optical density (OD) of the red, blue, and, red/blue components and the correction coefficient were calculated. For the correction coefficients, average values were calculated for the purpose of use, when the scan directions could not be aligned (average lateral effect correction). Correction accuracy was verified with the pass rate of gamma analysis (3 mm/3%, threshold 30%) of the dose distribution using the EBT3 film irradiated with the step pattern. OD of the red, blue, and, red/blue components in the scanning vertical direction tended to be higher in the center than in the peripheral portion. The pass rate of the step pattern was the red component's before correction, from 26.9 to 45.1% (before correction), from 84.1 to 96.7% (after correction), the red/blue component, from 37.6 to 48.4% (before correction) and from 84.4 to 96.7% (after correction). When using the correction coefficient using the average value, the pass rate was 89.8% for the red component and 94.7% for the red/blue component. The lateral effect correction improves the accuracy of the dose distribution verification, and the correction coefficient using the average value is useful when the scanning direction is different from that at the time of obtaining the dose concentration curve.


Assuntos
Algoritmos , Dosimetria Fotográfica , Calibragem , Cintilografia
8.
J Appl Clin Med Phys ; 20(6): 45-52, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31081175

RESUMO

Computed tomography (CT) data are required to calculate the dose distribution in a patient's body. Generally, there are two CT number calibration methods for commercial radiotherapy treatment planning system (RTPS), namely CT number-relative electron density calibration (CT-RED calibration) and CT number-mass density calibration (CT-MD calibration). In a previous study, the tolerance levels of CT-RED calibration were established for each tissue type. The tolerance levels were established when the relative dose error to local dose reached 2%. However, the tolerance levels of CT-MD calibration are not established yet. We established the tolerance levels of CT-MD calibration based on the tolerance levels of CT-RED calibration. In order to convert mass density (MD) to relative electron density (RED), the conversion factors were determined with adult reference computational phantom data available in the International Commission on Radiological Protection publication 110 (ICRP-110). In order to validate the practicability of the conversion factor, the relative dose error and the dose linearity were validated with multiple RTPSes and dose calculation algorithms for two groups, namely, CT-RED calibration and CT-MD calibration. The tolerance levels of CT-MD calibration were determined from the tolerance levels of CT-RED calibration with conversion factors. The converted RED from MD was compared with actual RED calculated from ICRP-110. The conversion error was within ±0.01 for most standard organs. It was assumed that the conversion error was sufficiently small. The relative dose error difference for two groups was less than 0.3% for each tissue type. Therefore, the tolerance levels for CT-MD calibration were determined from the tolerance levels of CT-RED calibration with the conversion factors. The MD tolerance levels for lung, adipose/muscle, and cartilage/spongy-bone corresponded to ±0.044, ±0.022, and ±0.045 g/cm3 , respectively. The tolerance levels were useful in terms of approving the CT-MD calibration table for clinical use.


Assuntos
Algoritmos , Imagens de Fantasmas , Fótons/uso terapêutico , Proteção Radiológica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
9.
Rep Pract Oncol Radiother ; 24(2): 233-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858767

RESUMO

The purpose of this study was to investigate the effect of image quality under various imaging parameters (60, 70, 80, 90, 100, 110, and 120 kV at 200 mA and 10 ms/63, 80, 100, 160, 200, 250, and 320 mA at 120 kV and 10 ms) and the diameter of the fiducial marker (0.25, 0.50, 0.75, and 1.10 mm) on the correlation modeling error for dynamic tumor tracking (DTT) in the Vero4DRT system. Each fiducial marker was inserted into the center of the 30 × 30 × 10 cm3 water-equivalent phantom. A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of ±20 mm and a breathing cycle of 4 s. The correlation modeling error was calculated from the absolute difference between the detected and predicted target positions in the cranio-caudal direction. The image contrast of the fiducial marker was enhanced with increasing kV and mA. Increasing the diameter of the fiducial marker also enhanced the image contrast. Correlation-modeling error does not depend on the image quality and fiducial marker diameter. A lower kV setting did not generate a 4D model due to poor image contrast. All fiducial marker diameters were identified as good candidates for DTT in the Vero4DRT system.

10.
J Appl Clin Med Phys ; 19(3): 360-366, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29667294

RESUMO

PURPOSE: Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). METHODS: Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDIw ). RESULTS: Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. CONCLUSIONS: We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomógrafos Computadorizados/normas , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação
11.
Rep Pract Oncol Radiother ; 23(3): 183-188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760592

RESUMO

PURPOSE: The purpose of this study was to verify whether the dynamic tumor tracking (DTT) feature of a Vero4DRT system performs with 10-mm-long and 0.28 mm diameter gold anchor markers. METHODS: Gold anchor markers with a length of 10 mm and a diameter of 0.28 mm were used. Gold anchor markers were injected with short and long types into bolus material. These markers were sandwiched by a Tough Water (TW) phantom in the bolus material. For the investigation of 4-dimensional (4D) modeling feasibility under various phantom thicknesses, the TW phantom was added at 2 cm intervals (in upper and lower each by 1 cm). A programmable respiratory motion table was used to simulate breathing-induced organ motion, with an amplitude of 30 mm and a breathing cycle of 3 s. X-ray imaging parameters of 80 kV and 125 kV (320 mA and 5 ms) were used. The least detection error of the fiducial marker was defined as the 4D-modeling limitation. RESULTS: The 4D modeling process was attempted using short and long marker types and its limitation with the short and long types was with phantom thicknesses of 6 and 10 cm at 80 kV and 125 kV, respectively. However, the loss in detectability of the gold anchor because of 4D-modeling errors was found to be approximately 6% (2/31) with a phantom thickness of 2 cm under 125 kV. 4D-modeling could be performed except under the described conditions. CONCLUSIONS: This work showed that a 10-mm-long gold anchor marker in short and long types can be used with DTT for short water equivalent path length site, such as lung cancer patients, in the Vero4DRT system.

12.
Artigo em Japonês | MEDLINE | ID: mdl-29563395

RESUMO

It is important for high-precision radiation therapy that tracking accuracy in dynamic tumor tracking (DTT) using the gimbal X-ray head. We evaluated the tracking accuracy under various respiratory patterns differ from a correlation model [four-dimensional model (4D-model)] in real-time using a digital camera. A sheet of paper with luminous line was placed on the programmable respiratory motion table (CIRS Inc.) and operated with the laser projector. The luminous line was defined as a target and the laser was defined as a gimbal. Motion table was operated at a period of 4 s and amplitude of ±10 mm to create 4D-modeling. This movement was defined as the basic operation. To investigate the tracking accuracy, target and gimbal positions were recorded using a digital camera under amplitudes (±5-20 mm) and periods (2-8 s) and analyzed by ImageJ software (NIH). The maximum tracking errors under various period and amplitude were 1.7-0.9 mm and 0.4-1.9 mm, respectively. From the creation of 4D-modeling, it was confirmed that when the period has shortened and the amplitude has increased, tracking accuracy was reduced.


Assuntos
Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Humanos , Reprodutibilidade dos Testes
13.
J Appl Clin Med Phys ; 18(5): 97-103, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691343

RESUMO

This study investigated position dependence in planning target volume (PTV)-based and robust optimization plans using full-arc and partial-arc volumetric modulated arc therapy (VMAT). The gantry angles at the periphery, intermediate, and center CTV positions were 181°-180° (full-arc VMAT) and 181°-360° (partial-arc VMAT). A PTV-based optimization plan was defined by 5 mm margin expansion of the CTV to a PTV volume, on which the dose constraints were applied. The robust optimization plan consisted of a directly optimized dose to the CTV under a maximum-uncertainties setup of 5 mm. The prescription dose was normalized to the CTV D99% (the minimum relative dose that covers 99% of the volume of the CTV) as an original plan. The isocenter was rigidly shifted at 1 mm intervals in the anterior-posterior (A-P), superior-inferior (S-I), and right-left (R-L) directions from the original position to the maximum-uncertainties setup of 5 mm in the original plan, yielding recalculated dose distributions. It was found that for the intermediate and center positions, the uncertainties in the D99% doses to the CTV for all directions did not significantly differ when comparing the PTV-based and robust optimization plans (P > 0.05). For the periphery position, uncertainties in the D99% doses to the CTV in the R-L direction for the robust optimization plan were found to be lower than those in the PTV-based optimization plan (P < 0.05). Our study demonstrated that a robust optimization plan's efficacy using partial-arc VMAT depends on the periphery CTV position.


Assuntos
Imagens de Fantasmas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica
14.
J Appl Clin Med Phys ; 18(1): 49-52, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28291928

RESUMO

To perform dynamic tumor tracking (DTT) for clinical applications safely and accurately, gimbaled head swing verification is important. We propose a quantitative gimbaled head swing verification method for daily quality assurance (QA), which uses feature point tracking and a web camera. The web camera was placed on a couch at the same position for every gimbaled head swing verification, and could move based on a determined input function (sinusoidal patterns; amplitude: ± 20 mm; cycle: 3 s) in the pan and tilt directions at isocenter plane. Two continuous images were then analyzed for each feature point using the pyramidal Lucas-Kanade (LK) method, which is an optical flow estimation algorithm. We used a tapped hole as a feature point of the gimbaled head. The period and amplitude were analyzed to acquire a quantitative gimbaled head swing value for daily QA. The mean ± SD of the period were 3.00 ± 0.03 (range: 3.00-3.07) s and 3.00 ± 0.02 (range: 3.00-3.07) s in the pan and tilt directions, respectively. The mean ± SD of the relative displacement were 19.7 ± 0.08 (range: 19.6-19.8) mm and 18.9 ± 0.2 (range: 18.4-19.5) mm in the pan and tilt directions, respectively. The gimbaled head swing was reliable for DTT. We propose a quantitative gimbaled head swing verification method for daily QA using the feature point tracking method and a web camera. Our method can quantitatively assess the gimbaled head swing for daily QA from baseline values, measured at the time of acceptance and commissioning.


Assuntos
Imageamento Tridimensional/instrumentação , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Marcadores Fiduciais , Cabeça/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Raios Infravermelhos , Movimento , Reconhecimento Automatizado de Padrão , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
15.
Rep Pract Oncol Radiother ; 22(4): 290-294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507458

RESUMO

BACKGROUND: An important issue in indirect dynamic tumor tracking with the Vero4DRT system is the accuracy of the model predictions of the internal target position based on surrogate infrared (IR) marker measurement. We investigated the predictive uncertainty of 4D modeling using an external IR marker, focusing on the effect of the target and surrogate amplitudes and periods. METHODS: A programmable respiratory motion table was used to simulate breathing induced organ motion. Sinusoidal motion sequences were produced by a dynamic phantom with different amplitudes and periods. To investigate the 4D modeling error, the following amplitudes (peak-to-peak: 10-40 mm) and periods (2-8 s) were considered. The 95th percentile 4D modeling error (4D-E95%) between the detected and predicted target position (µ + 2SD) was calculated to investigate the 4D modeling error. RESULTS: 4D-E95% was linearly related to the target motion amplitude with a coefficient of determination R2 = 0.99 and ranged from 0.21 to 0.88 mm. The 4D modeling error ranged from 1.49 to 0.14 mm and gradually decreased with increasing target motion period. CONCLUSIONS: We analyzed the predictive error in 4D modeling and the error due to the amplitude and period of target. 4D modeling error substantially increased with increasing amplitude and decreasing period of the target motion.

16.
Rep Pract Oncol Radiother ; 22(3): 258-263, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28479875

RESUMO

We report the characteristics of quality assurance (QA) image for Vero4DRT system with a kilo-voltage (kV) cone-beam computed tomography (CBCT) capability to perform image-guided radiation therapy (IGRT). To acquire a set of CBCT, the kV source is rotated either 215° clockwise (CW) (tube 1 from 5° to 220° and tube 2 from 275° to 130°) or counterclockwise (CCW) (tube 1 from 85° to 230° and tube 2 from 355° to 140°). Image geometry, image uniformity, high/low contrast resolutions, and contrast linearity were measured with a Catphan 504 CT phantom (The Phantom Laboratory, NY). The comparison between measured and expected distances shows an excellent agreement. The CBCT for Vero4DRT system cannot perform a full 360° rotation, which leads to a loss in uniformity for image acquisition. Separations were observed for high-contrast resolution, with eight line pairs per centimeter corresponding to a gap size of 0.063 cm. For low-contrast resolution, the seventh largest hole was visible. This hole has a 4-mm diameter with 1.0% contrast level. We should check the contrast linearity compared with known value, even though it is out of range from the manufacturer manual.

17.
J Appl Clin Med Phys ; 17(5): 177-183, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685142

RESUMO

We proposed a simple visual method for evaluating the dynamic tumor tracking (DTT) accuracy of a gimbal mechanism using a light field. A single photon beam was set with a field size of 30 × 30 mm2 at a gantry angle of 90°. The center of a cube phantom was set up at the isocenter of a motion table, and 4D modeling was performed based on the tumor and infrared (IR) marker motion. After 4D modeling, the cube phantom was replaced with a sheet of paper, which was placed perpen-dicularly, and a light field was projected on the sheet of paper. The light field was recorded using a web camera in a treatment room that was as dark as possible. Calculated images from each image obtained using the camera were summed to compose a total summation image. Sinusoidal motion sequences were produced by moving the phantom with a fixed amplitude of 20 mm and different breathing periods of 2, 4, 6, and 8 s. The light field was projected on the sheet of paper under three conditions: with the moving phantom and DTT based on the motion of the phantom, with the moving phantom and non-DTT, and with a stationary phantom for comparison. The values of tracking errors using the light field were 1.12 ± 0.72, 0.31 ± 0.19, 0.27 ± 0.12, and 0.15 ± 0.09 mm for breathing periods of 2, 4, 6, and 8s, respectively. The tracking accuracy showed dependence on the breath-ing period. We proposed a simple quality assurance (QA) process for the tracking accuracy of a gimbal mechanism system using a light field and web camera. Our method can assess the tracking accuracy using a light field without irradiation and clearly visualize distributions like film dosimetry.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/normas , Humanos , Movimento , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
18.
J Appl Clin Med Phys ; 17(6): 312-322, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929504

RESUMO

Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Calibragem , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
19.
J Appl Clin Med Phys ; 15(1): 4202, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24423832

RESUMO

The purpose of this study was to investigate the impact of Monte Carlo (MC) calculations and optimized dose definitions in stereotactic body radiotherapy (SBRT) for lung cancer patients. We used a retrospective patient review and basic virtual phantom to determine dose prescriptions. Fifty-three patients underwent SBRT. A basic virtual phantom had a gross tumor volume (GTV) of 10.0 mm with equivalent water density of 1.0 g/cm3, which was surrounded by equivalent lung surrounding the GTV of 0.25 g/cm3. D95 of the planning target volume (PTV) and D99 of the GTV were evaluated with different GTV sizes (5.0 to 30.0 mm) and different lung densities (0.05 to 0.45 g/cm3). Prescribed dose was defined as 95% of the PTV should receive 100% of the dose (48 Gy/4 fractions) using pencil beam (PB) calculation and recalculated using MC calculation. In the patient study, average doses to the D95 of the PTV and D99 of the GTV using the MC calculation plan were 19.9% and 10.2% lower than those by the PB calculation plan, respectively. In the phantom study, decreased doses to the D95 of the PTV and D99 of the GTV using the MC calculation plan were accompanied with changes GTV size from 30.0to 5.0 mm, which was decreased from 8.4% to 19.6% for the PTV and from 17.4%to 27.5% for the GTV. Similar results were seen with changes in lung density from 0.45 to 0.05 g/cm3, with doses to the D95 of the PTV and D99 of the GTV were decreased from 12.8% to 59.0% and from 7.6% to 44.8%, respectively. The decrease in dose to the PTV with MC calculation was strongly dependent on lung density. We suggest that dose definition to the GTV for lung cancer SBRT be optimized using MC calculation. Our current clinical protocol for lung SBRT is based on a prescribed dose of 44 Gy in 4 fractions to the GTV using MC calculation.


Assuntos
Neoplasias Pulmonares/cirurgia , Método de Monte Carlo , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Algoritmos , Seguimentos , Tomografia Computadorizada Quadridimensional , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Estudos Retrospectivos
20.
Med Dosim ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384488

RESUMO

PURPOSE: This study evaluated the accuracy of a commercial deep learning (DL)-based algorithm for segmenting the prostate, seminal vesicles (SV), and organs at risk (OAR) in patients with prostate cancer. METHODS: Ten patients with prostate cancer were selected to compare automated and manual segmentation. The prostate, SV, and OAR, including the bladder, rectum, left and right femoral heads, and penile bulb, were delineated and reviewed according to our institutional protocols by radiation oncologists. The CT and MR images were fused to the prostate, and the prostate and penile bulb were manually delineated on the CT and MR images. The remaining organs were delineated on the CT images without the MR images. MVision AI Contour+ was used to perform DL-based automated segmentation. The dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95%) were evaluated for comparison with manual delineations. RESULTS: The mean DSC values for the prostate, SV, bladder, rectum, both femoral heads, and penile bulb were 0.86, 0.80, 0.96, 0.92, 0.97, and 0.64, respectively. The HD95% for all the organs was less than 3 mm. CONCLUSIONS: The commercial DL-based auto segmentation solution provided high-quality contours in patients with prostate cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA