Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Eur J Neurosci ; 50(9): 3520-3530, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31340076

RESUMO

Sevoflurane, a commonly used anesthetic in surgery, has drawn attention because of its preconditioning effects in hypoxic conditions. To investigate the preconditioning effects in the striatum, a common site for ischemic stroke, we collected whole-cell current-clamp recordings from striatal medium spiny neurons. In our in vitro brain slice experiments, deprivation of oxygen and glucose depolarized the striatal neurons to subthreshold potentials, and the pre-administration of sevoflurane (4%, 15 min) prolonged the time to depolarization. Furthermore, transient hypoxia induced the potentiation of excitatory postsynaptic potentials, which play a part in post-ischemic excitotoxicity. Glibenclamide, a KATP channel inhibitor, reversed the prolonged time to depolarization and the prevention of the pathological potentiation of excitatory responses, indicating that the short exposure to sevoflurane likely participates in neuroprotection against hypoxia via activation of KATP channels. A monocarboxylate transporter blocker, 4-CIN, also depolarized striatal neurons. Interestingly, the blockade of monocarboxylate transporters that supply lactate to neurons caused the pathological potentiation, even in the presence of enough oxygen and glucose. In this case, sevoflurane could not prevent the pathological potentiation, suggesting the involvement of monocarboxylate transporters in the sevoflurane-mediated effects. These results indicate that sevoflurane protects striatal neurons from hypoxic damage and alleviates the pathological potentiation. Under these conditions, sevoflurane may become an effective intervention for patients undergoing surgery.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Corpo Estriado/fisiologia , Hipóxia/fisiopatologia , Sevoflurano/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glibureto/farmacologia , Masculino , Camundongos , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Sevoflurano/antagonistas & inibidores
2.
Eur J Neurosci ; 40(8): 3147-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25139222

RESUMO

The volatile anesthetic sevoflurane, which is widely used in pediatric surgery, has proposed effects on GABAA receptor-mediated extrasynaptic tonic inhibition. In the developing striatum, medium-sized spiny projection neurons have tonic GABA currents, which function in the excitatory/inhibitory balance and maturation of striatal neural circuits. In this study, we examined the effects of sevoflurane on the tonic GABA currents of medium spiny neurons in developing striatal slices. Sevoflurane strongly increased GABAA receptor-mediated tonic conductance at postnatal days 3-35. The antagonist of the GABA transporter-1, 1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride further increased tonic GABA conductance during the application of sevoflurane, thereby increasing the total magnitude of tonic currents. Both GABA (5 µM) and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride, the δ-subunit-containing GABAA receptor agonist, induced tonic GABA currents in medium spiny neurons but not in cholinergic neurons. However, sevoflurane additively potentiated the tonic GABA currents in both cells. Interestingly, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol hydrochloride-sensitive neurons made a large current response to sevoflurane, indicating the contribution of the δ-subunit on sevoflurane-enhanced tonic GABA currents. Our findings suggest that sevoflurane can affect the tone of tonic GABA inhibition in a developing striatal neural network.


Assuntos
Anestésicos Inalatórios/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Éteres Metílicos/farmacologia , Neostriado/efeitos dos fármacos , Neostriado/crescimento & desenvolvimento , Receptores de GABA-A/fisiologia , Animais , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Sevoflurano , Ácido gama-Aminobutírico/metabolismo
3.
Sci Rep ; 13(1): 4323, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922562

RESUMO

Physiological aging causes motor function decline and anatomical and biochemical changes in the motor cortex. We confirmed that middle-aged mice at 15-18 months old show motor function decline, which can be restored to the young adult level by supplementing with mitochondrial electron transporter coenzyme Q10 (CoQ10) as a water-soluble nanoformula by drinking water for 1 week. CoQ10 supplementation concurrently improved brain mitochondrial respiration but not muscle strength. Notably, we identified an age-related decline in field excitatory postsynaptic potential (fEPSP) amplitude in the pathway from layers II/III to V of the primary motor area of middle-aged mice, which was restored to the young adult level by supplementing with CoQ10 for 1 week but not by administering CoQ10 acutely to brain slices. Interestingly, CoQ10 with high-frequency stimulation induced NMDA receptor-dependent long-term potentiation (LTP) in layer V of the primary motor cortex of middle-aged mice. Importantly, the fEPSP amplitude showed a larger input‒output relationship after CoQ10-dependent LTP expression. These data suggest that CoQ10 restores the motor function of middle-aged mice by improving brain mitochondrial function and the basal fEPSP level of the motor cortex, potentially by enhancing synaptic plasticity efficacy. Thus, CoQ10 supplementation may ameliorate the age-related decline in motor function in humans.


Assuntos
Córtex Motor , Ubiquinona , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Camundongos , Animais , Lactente , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Córtex Motor/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Suplementos Nutricionais
4.
Eur J Neurosci ; 35(9): 1396-405, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22507597

RESUMO

Suppression of movement during induction of anesthesia is mediated through subcortical structures. We studied the effects of a brief, 5-min application of a clinically relevant concentration of sevoflurane (two minimum alveolar concentration) on the electrophysiological activities of the medium spiny neurons (MSNs) of the striatum in brain slice preparations, using a whole-cell patch-clamp technique. We found that sevoflurane slightly depolarized principal neurons in the cortex and the striatum without a significant alteration in spike threshold. Furthermore, it depressed the peak, as well as the net, charge transfer of intrastriatally evoked inhibitory postsynaptic currents (eIPSCs) much more strongly than those of excitatory postsynaptic currents (EPSCs), and this inhibition was accompanied by an elevated paired-pulse ratio. The strong suppression of eIPSCs paralleled a significant suppression of the frequency, but not the amplitude, of miniature IPSCs (mIPSCs), and was associated with a transient increase in the frequency of spontaneous EPSCs. Treatment with the Ca(2+) channel blocker Cd(2+) restored the frequency of mIPSCs to the control level, indicating sevoflurane's strong presynaptic suppression of γ-aminobutyric acid release in the striatum. In contrast, in hippocampal CA1 pyramidal neurons sevoflurane produced an enhancement of the net charge transfer of IPSCs, while it suppressed EPSCs to an equivalent degree to that in striatal MSNs. These results suggest that, in contrast to its effects on other brain structures, sevoflurane shifts the balance between synaptic excitation and inhibition in the direction of excitation in the striatum, thereby causing involuntary movements during induction of anesthesia by sevoflurane.


Assuntos
Anestésicos/farmacologia , Corpo Estriado/citologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Éteres Metílicos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/citologia , Cloreto de Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Patch-Clamp , Tempo de Reação/efeitos dos fármacos , Sevoflurano , Fatores de Tempo
5.
Hum Mol Genet ; 18(4): 723-36, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19039037

RESUMO

We herein provide a thorough description of new transgenic mouse models for dentatorubral-pallidoluysian atrophy (DRPLA) harboring a single copy of the full-length human mutant DRPLA gene with 76 and 129 CAG repeats. The Q129 mouse line was unexpectedly obtained by en masse expansion based on the somatic instability of 76 CAG repeats in vivo. The mRNA expression levels of both Q76 and Q129 transgenes were each 80% of that of the endogenous mouse gene, whereas only the Q129 mice exhibited devastating progressive neurological phenotypes similar to those of juvenile-onset DRPLA patients. Electrophysiological studies of the Q129 mice demonstrated age-dependent and region-specific presynaptic dysfunction in the globus pallidus and cerebellum. Progressive shrinkage of distal dendrites of Purkinje cells and decreased currents through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and gamma-aminobutyrate type A receptors in CA1 neurons were also observed. Neuropathological studies of the Q129 mice revealed progressive brain atrophy, but no obvious neuronal loss, associated with massive neuronal intranuclear accumulation (NIA) of mutant proteins with expanded polyglutamine stretches starting on postnatal day 4, whereas NIA in the Q76 mice appeared later with regional specificity to the vulnerable regions of DRPLA. Expression profile analyses demonstrated age-dependent down-regulation of genes, including those relevant to synaptic functions and CREB-dependent genes. These results suggest that neuronal dysfunction without neuronal death is the essential pathophysiologic process and that the age-dependent NIA is associated with nuclear dysfunction including transcriptional dysregulations. Thus, our Q129 mice should be highly valuable for investigating the mechanisms of disease pathogenesis and therapeutic interventions.


Assuntos
Epilepsias Mioclônicas Progressivas/fisiopatologia , Proteínas do Tecido Nervoso/genética , Expansão das Repetições de Trinucleotídeos , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fenótipo , Transmissão Sináptica
6.
Eur J Neurosci ; 34(9): 1355-67, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22004548

RESUMO

The striatum harbors a small number of tyrosine hydroxylase (TH) mRNA-containing GABAergic neurons that express TH immunoreactivity after dopamine depletion, some of which reportedly resembled striatal medium spiny projection neurons (MSNs). To clarify whether the TH mRNA-expressing neurons were a subset of MSNs, we characterized their postnatal development of electrophysiological and morphological properties using a transgenic mouse strain expressing enhanced green fluorescent protein (EGFP) under the control of the rat TH gene promoter. At postnatal day (P)1, EGFP-TH+ neurons were present as clusters in the striatum and, thereafter, gradually scattered ventromedially by P18 without regard to the striatal compartments. They were immunonegative for calbindin, but immunopositive for enkephalin (54.5%) and dynorphin (80.0%). Whole-cell patch-clamp recordings revealed at least two distinct neuronal types, termed EGFP-TH+ Type A and B. Whereas Type B neurons were aspiny and negative for the MSN marker dopamine- and cyclic AMP-regulated phosphoprotein of 32 kDa (DARPP-32), Type A neurons constituted 75% of the EGFP+ cells, had dendritic spines (24.6%), contained DARPP-32 (73.6%) and a proportion acquired TH immunoreactivity after injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 3-nitropropionic acid. The membrane properties and N-methyl-d-aspartate : non-N-methyl-d-aspartate excitatory postsynaptic current ratio of Type A neurons were very similar to MSNs at P18. However, their resting membrane potentials and spike widths were statistically different from those of MSNs. In addition, the calbindin-like, DARPP-32-like and dynorphin B-like immunoreactivity of Type A neurons developed differently from that of MSNs in the matrix. Thus, Type A neurons closely resemble MSNs, but constitute a cell type distinct from classical MSNs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neostriado/citologia , Neostriado/crescimento & desenvolvimento , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Calbindinas , Colina O-Acetiltransferase/metabolismo , Dopaminérgicos/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Proteínas do Domínio Duplacortina , Dinorfinas/metabolismo , Encefalinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neostriado/efeitos dos fármacos , Neurônios/classificação , Neuropeptídeos/metabolismo , Óxido Nítrico Sintase/metabolismo , Técnicas de Patch-Clamp , Ratos , Proteína G de Ligação ao Cálcio S100/metabolismo , Tubulina (Proteína)/metabolismo
7.
Learn Mem ; 17(4): 176-85, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20332189

RESUMO

A recent study has revealed that fear memory may be vulnerable following retrieval, and is then reconsolidated in a protein synthesis-dependent manner. However, little is known about the molecular mechanisms of these processes. Activin betaA, a member of the TGF-beta superfamily, is increased in activated neuronal circuits and regulates dendritic spine morphology. To clarify the role of activin in the synaptic plasticity of the adult brain, we examined the effect of inhibiting or enhancing activin function on hippocampal long-term potentiation (LTP). We found that follistatin, a specific inhibitor of activin, blocked the maintenance of late LTP (L-LTP) in the hippocampus. In contrast, administration of activin facilitated the maintenance of early LTP (E-LTP). We generated forebrain-specific activin- or follistatin-transgenic mice in which transgene expression is under the control of the Tet-OFF system. Maintenance of hippocampal L-LTP was blocked in the follistatin-transgenic mice. In the contextual fear-conditioning test, we found that follistatin blocked the formation of long-term memory (LTM) without affecting short-term memory (STM). Furthermore, consolidated memory was selectively weakened by the expression of follistatin during retrieval, but not during the maintenance phase. On the other hand, the maintenance of memory was also influenced by activin overexpression during the retrieval phase. Thus, the level of activin in the brain during the retrieval phase plays a key role in the maintenance of long-term memory.


Assuntos
Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Animais , Comportamento Animal , Biofísica , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Doxiciclina/administração & dosagem , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Medo , Folistatina/genética , Folistatina/farmacologia , Lateralidade Funcional , Técnicas In Vitro , Subunidades beta de Inibinas/genética , Subunidades beta de Inibinas/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prosencéfalo/metabolismo , Ratos , Ratos Wistar
8.
J Antibiot (Tokyo) ; 72(12): 943-955, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31413314

RESUMO

We screened for bacterial phospho-N-acetylmuramyl-pentapeptide-translocase (MraY: EC 2.7.8.13) inhibitors with the aim of discovering novel antibiotics and observed inhibitory activity in the culture broth of an actinomycete, SANK 60501. The active compounds, muraminomicins A, B, C, D, E1, E2, F, G, H, and I exhibited strong inhibitory activity against MraY with IC50 values of 0.0105, 0.0068, 0.0104, 0.0099, 0.0115, 0.0109, 0.0089, 0.0134, 0.0186, and 0.0094 µg ml-1, respectively. Although muraminomicin F exhibited favorable antibacterial activity against drug-resistant Gram-positive bacteria, this activity was reduced with the addition of serum. To efficiently supply the core component for chemical modification studies, production was carried out in a controlled trial by adding myristic acid to the medium, and a purification method suitable for large-scale production was successfully developed.


Assuntos
Actinomycetales/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Actinomycetales/genética , Antibacterianos/biossíntese , Proteínas de Bactérias/antagonistas & inibidores , Ácidos Graxos/química , Fermentação , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Transferases/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)
9.
J Neurosci ; 27(36): 9721-8, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17804632

RESUMO

The striatum is a heterogeneous mosaic of two neurochemically, developmentally, and functionally distinct compartments: the mu-opioid receptor (MOR)-enriched striosomes and the matrix. Preferential activation of the striosomes and persistent suppression of the matrix have recently been suggested to represent neural correlates of motor stereotypy. However, little is known concerning the physiological properties of the striosomes. We made patch-clamp recordings from medium spiny neurons in identified MOR-immunoreactive "dopamine islands" as striosomes in a slice preparation taken from transgenic mice expressing green fluorescent protein in tyrosine hydroxylase mRNA-containing neurons. Striosomal neurons differed electrophysiologically from cells in the matrix in having significantly less hyperpolarized resting membrane potentials and larger input resistances, suggesting developmental differences between the two types of cells. Moreover, corticostriatal EPSCs were inhibited by MOR activation to similar extents in the two compartments, although inhibition of IPSCs was observed only in the striosomes. This MOR-induced inhibition of IPSCs was presynaptically mediated, because MOR agonist invariably decreased IPSC amplitudes when postsynaptic G-protein was inactivated, significantly increased the paired-pulse ratio of the IPSCs, and decreased the frequency but not the amplitude of miniature IPSCs. These effects of MOR were mediated principally by 4-aminopyridine-sensitive K+ conductance via a cAMP-dependent pathway, which was further augmented by previous blockade of the protein kinase C cascade. These findings suggest that MOR activation by endogenous and/or exogenous MOR-selective opioid substances differentially regulates the activities of the striosome and matrix compartments and thus plays an important role in motivated behavior and learning.


Assuntos
Corpo Estriado/metabolismo , Dopamina/biossíntese , Proteínas de Fluorescência Verde/biossíntese , Receptores Opioides mu/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Analgésicos Opioides/farmacologia , Animais , Corpo Estriado/citologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Camundongos Transgênicos , Antagonistas de Entorpecentes/farmacologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Receptores Opioides mu/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/biossíntese
10.
Mol Neurobiol ; 37(2-3): 104-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18473190

RESUMO

The striatum is divided into two compartments, the striosomes and extrastriosomal matrix, which differ in several cytochemical markers, input-output connections, and time of neurogenesis. Since it is thought that limbic, reward-related information and executive aspects of behavioral information may be differentially processed in the striosomes and matrix, respectively, intercompartmental communication should be of critical importance to proper functioning of the basal ganglia-thalamocortical circuits. Cholinergic interneurons are in a suitable position for this communication since they are preferentially located in the striosome-matrix boundaries and are known to elicit a conditioned pause response during sensorimotor learning. Recently, micro-opioid receptor (MOR) activation was found to presynaptically suppress the amplitude of GABAergic inhibitory postsynaptic currents in striosomal cells but not in matrix cells. Disinhibition of cells in the striosomes is further enhanced by inactivation of the protein kinase C cascade. We discuss in this review the possibility that MOR activation in the striosomes affects the activity of cholinergic interneurons and thus leads to changes in synaptic efficacy in the striatum.


Assuntos
Corpo Estriado , Receptores Opioides mu/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Corpo Estriado/anatomia & histologia , Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/citologia , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C/metabolismo
11.
Protein Expr Purif ; 59(2): 289-96, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18387312

RESUMO

Fibrinogen is a large plasma glycoprotein with a molecular mass of 340kDa that plays a critical role in the final stage of blood coagulation. Human plasma fibrinogen is a dimeric molecule comprising two sets of three different polypeptides (Aalpha, 66kDa; Bbeta, 55kDa; gamma, 48kDa). To express recombinant human fibrinogen in the methylotrophic yeast Pichia pastoris, we constructed an expression vector containing three individual fibrinogen chain cDNAs under the control of the mutated AOX2 (mAOX2) promoter. First, P. pastoris GTS115 was transformed with the vector, but the expressed recombinant fibrinogen suffered severe degradation by yeast-derived proteases under conventional nutrient culture conditions. Fibrinogen degradation was prevented by using the protease A-deficient strain SMD1168 as a host strain and regulating the pH of the culture to between 5.5 and 7.0. Western blot analysis revealed that the Aalpha, Bbeta and gamma chains of recombinant fibrinogen were assembled and secreted as a complete molecule. The Bbeta chain of the recombinant fibrinogen was N-glycosylated but the Aalpha chain, as in plasma fibrinogen, was not. The gamma chains however were heterologous, one being N-glycosylated and the other not. The recombinant fibrinogen was capable of forming a thrombin-induced clot in the presence of factor XIIIa and both the glycosylated and the non-glycosylated gamma chains were involved in the formation of cross-linking fibrin. The present study indicates that the recombinant fibrinogen expressed in P. pastoris, although different from plasma fibrinogen in post-translational modification, is correctly assembled and biologically active.


Assuntos
Fibrinogênio/biossíntese , Fibrinogênio/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Técnicas de Cultura de Células , Fibrinogênio/farmacologia , Vetores Genéticos/genética , Humanos , Concentração de Íons de Hidrogênio , Pichia/genética , Proteínas Recombinantes/farmacologia
12.
Neurosci Res ; 132: 8-16, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28970101

RESUMO

Volatile anesthetics have been reported to inhibit hyperpolarization-activated cyclic-nucleotide gated channels underlying the hyperpolarization-activated cation current (Ih) that contributes to generation of synchronized oscillatory neural rhythms. Meanwhile, the developmental change of Ih has been speculated to play a pivotal role during maturation. In this study, we examined the effect of the volatile anesthetic sevoflurane, which is widely used in pediatric surgery, on Ih and on functional Ih activation kinetics of cholinergic interneurons in developing striatum. Our analyses showed that the changes in Ih of cholinergic interneurons occurred in conjunction with maturation. Sevoflurane application (1-4%) caused significant inhibition of Ih in a dose-dependent manner, and apparently slowed Ih activation. In current-clamp recordings, sevoflurane significantly decreased spike firing during the rebound activation, which is essential for responses to the sensory inputs from the cortex and thalamus. The sevoflurane-induced inhibition of Ih in striatal cholinergic interneurons may lead to alterations of the acetylcholine-dopamine balance in the neural circuits during the early postnatal period.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Éteres Metílicos/farmacologia , Anestésicos/farmacologia , Animais , Córtex Cerebral/metabolismo , Estimulação Elétrica/métodos , Interneurônios/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Canais de Potássio/metabolismo , Sevoflurano , Tálamo/efeitos dos fármacos
13.
Neurosci Res ; 59(4): 413-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17889953

RESUMO

Pael receptor (Pael-R) has been identified as one of the substrates of Parkin, a ubiquitin ligase responsible for autosomal recessive juvenile Parkinsonism (AR-JP). When Parkin is inactivated, unfolded Pael-R accumulates in the endoplasmic reticulum and results in neuronal death by unfolded protein stress, suggesting that Pael-R has an important role in the pathogenesis of AR-JP. Here we report the analyses on Pael-R-deficient (KO) and Pael-R-transgenic (Tg) mice. The striatal dopamine (DA) level of Pael-R KO mice was only 60% of that in normal mice, while in Pael-R Tg mice, striatal 3,4-dihydroxyphenylacetic acid (DOPAC) as well as vesicular DA content increased. Moreover, the nigrostriatal dopaminergic neurons of Pael-R Tg mice are more vulnerable to Parkinson's disease-related neurotoxins while those of Pael-R KO mice are less. These results strongly suggest that the Pael-R signal regulates the amount of DA in the dopaminergic neurons and that excessive Pael-R expression renders dopaminergic neurons susceptible to chronic DA toxicity.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Vias Neurais/metabolismo , Receptores Acoplados a Proteínas G/genética , Substância Negra/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Corpo Estriado/fisiopatologia , Resistência a Medicamentos/genética , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Vias Neurais/fisiopatologia , Neurotoxinas/toxicidade , Oxidopamina/toxicidade , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Substância Negra/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo
14.
Neurobiol Aging ; 60: 11-19, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917663

RESUMO

We previously reported increase in leucine-rich α2-glycoprotein (LRG) concentration in cerebrospinal fluid is associated with cognitive decline in humans. To investigate relationship between LRG expression in the brain and memory impairment, we analyzed transgenic mice overexpressing LRG in the brain (LRG-Tg) focusing on hippocampus. Immunostaining and Western blotting revealed age-related increase in LRG expression in hippocampal neurons in 8-, 24-, and 48-week-old controls and LRG-Tg. Y-maze and Morris water maze tests indicated retained spatial memory in 8- and 24-week-old LRG-Tg, while deteriorated in 48-week-old LRG-Tg compared with age-matched controls. Field excitatory postsynaptic potentials declined with age in LRG-Tg compared with controls at 8, 24, and 48 weeks. Paired-pulse ratio decreased with age in LRG-Tg, while increased in controls. As a result, long-term potentiation was retained in 8- and 24-week-old LRG-Tg, whereas diminished in 48-week-old LRG-Tg compared with age-matched controls. Electron microscopy observations revealed fewer synaptic vesicles and junctions in LRG-Tg compared with age-matched controls, which became significant with age. Hippocampal LRG overexpression contributes to synaptic dysfunction, which leads to memory impairment with advance of age.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/genética , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Leucina , Potenciação de Longa Duração , Camundongos Transgênicos , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
15.
Neuroreport ; 17(5): 537-40, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16543821

RESUMO

Recent studies suggest the involvement of the dorsal striatum in the advanced stages of drug addiction as well as motor functions. We investigated the effect of chronic nicotine treatment on GABAergic synaptic transmission in the striatum of mice. Intrastriatal stimulation evoked GABAA receptor-mediated polysynaptic inhibitory postsynaptic currents more frequently in medium-sized spiny projection neurons of mice treated chronically with nicotine (1 mg/kg, twice-daily subcutaneous injections for 10-15 days) than in those of PBS-treated mice. The multiphasic inhibitory postsynaptic currents consisted of monosynaptic early and polysynaptic, nicotinic acetylcholine receptor-mediated late components. Dihydro-beta-erythroidine, an antagonist of the non-alpha7nicotinic acetylcholine receptor, suppressed only the late inhibitory postsynaptic current. These results suggest that chronic nicotine treatment increases GABAergic input to projection neurons in the dorsal striatum.


Assuntos
Neostriado/fisiologia , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Ácido gama-Aminobutírico/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/citologia , Neostriado/efeitos dos fármacos , Técnicas de Patch-Clamp , Estimulação Química
16.
Neuropharmacology ; 105: 318-328, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26808315

RESUMO

The striatum consists of two neurochemically distinct compartments: the striosomes (or patches) and the extrastriosomal matrix. Although striatal neurons are strongly innervated by intrinsic cholinergic interneurons, acetylcholinesterase is expressed more abundantly in the matrix than in the striosomes. At present, little is known about the different cholinergic functions of the striatal compartments. In this study, we examined gamma-aminobutyric acidergic (GABAergic) inputs to cholinergic interneurons in both compartments. We found that nicotinic receptor-mediated GABAergic responses were evoked more frequently in the matrix than in the striosomes. Furthermore, a single action potential of cholinergic neurons induced nicotinic receptor-mediated GABAergic inputs to the cholinergic neurons themselves, suggesting mutual connections that shape the temporal firing pattern of cholinergic neurons. The nicotinic receptor-mediated GABAergic responses were attenuated by continuous application of acetylcholine or the acetylcholinesterase inhibitor eserine and were enhanced by desformylflustrabromine, a positive allosteric modulator of the α4ß2 subunit containing a nicotinic receptor. These results suggest that the nicotinic impact on the GABAergic responses are not uniform despite the massive and continuous cholinergic innervation. It has been reported that differential activation of neurons in the striosomes and the matrix produce a repetitive behavior called stereotypy. Drugs acting on α4ß2 nicotinic receptors might provide potential tools for moderating the imbalanced activities between the compartments.


Assuntos
Corpo Estriado/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Inibidores da Colinesterase/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Hidrocarbonetos Bromados/farmacologia , Técnicas In Vitro , Alcaloides Indólicos/farmacologia , Masculino , Camundongos , Fisostigmina/farmacologia
17.
Neuron ; 89(3): 550-65, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26804993

RESUMO

Dopamine (DA) type 1 receptor (D1R) signaling in the striatum presumably regulates neuronal excitability and reward-related behaviors through PKA. However, whether and how D1Rs and PKA regulate neuronal excitability and behavior remain largely unknown. Here, we developed a phosphoproteomic analysis method to identify known and novel PKA substrates downstream of the D1R and obtained more than 100 candidate substrates, including Rap1 GEF (Rasgrp2). We found that PKA phosphorylation of Rasgrp2 activated its guanine nucleotide-exchange activity on Rap1. Cocaine exposure activated Rap1 in the nucleus accumbens in mice. The expression of constitutively active PKA or Rap1 in accumbal D1R-expressing medium spiny neurons (D1R-MSNs) enhanced neuronal firing rates and behavioral responses to cocaine exposure through MAPK. Knockout of Rap1 in the accumbal D1R-MSNs was sufficient to decrease these phenotypes. These findings demonstrate a novel DA-PKA-Rap1-MAPK intracellular signaling mechanism in D1R-MSNs that increases neuronal excitability to enhance reward-related behaviors.


Assuntos
Dopamina/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica , Receptores de Dopamina D1/metabolismo , Recompensa , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo , Potenciais de Ação/fisiologia , Animais , Benzazepinas/farmacologia , Cocaína/farmacologia , Colforsina/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/farmacologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas rap1 de Ligação ao GTP/genética
18.
J Neurosci ; 22(19): 8379-90, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12351712

RESUMO

Heterotromeric G-proteins of the Gq family are thought to transduce signals from group I metabotropic glutamate receptors (mGluRs) in central neurons. We investigated roles of this cascade in hippocampal long-term potentiation (LTP) by using null-mutant mice lacking the alpha subunit of Gq (Galphaq) or G11 (Galpha11). We found no obvious abnormalities in the morphology, layer structure, expression of NMDA receptors, and basic parameters of excitatory synaptic transmission in the hippocampus of Galphaq mutant mice. We used theta burst stimulation (TBS) (3-10 burst trains at 5 Hz; each train consisted of five stimuli at 100 Hz) to induce LTP at Schaffer collateral to CA1 pyramidal cell synapses. Conventional TBS with 10 burst trains induced robust LTP in wild-type, Galphaq mutant, and Galpha11 mutant mice. Weak TBS with three burst trains consistently induced LTP in wild-type mice. In contrast, the same weak TBS was insufficient to induce LTP in Galphaq and Galpha11 mutant mice. In wild-type mice, the LTP by weak TBS was abolished by inhibiting group I mGluR or protein kinase C (PKC) but not by blocking muscarinic acetylcholine receptors. Prior activation of group I mGluR by an agonist significantly enhanced the LTP by weak TBS in wild-type mice. However, this priming effect was absent in Galphaq mutant mice. These results indicate that the signaling from group I mGluR to PKC involving Galphaq/Galpha11 does not constitute the main pathway for LTP, but it secures LTP induction by lowering its threshold in the hippocampal area CA1.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/deficiência , Proteínas Heterotriméricas de Ligação ao GTP/genética , Hipocampo/anatomia & histologia , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Técnicas de Patch-Clamp , Subunidades Proteicas , Células Piramidais/metabolismo , Receptor de Glutamato Metabotrópico 5 , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
19.
J Neurosci ; 23(37): 11662-72, 2003 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-14684868

RESUMO

Dopamine D4 receptors (D4R) are localized in the globus pallidus (GP), but their function remains unknown. In contrast, dopamine D2 receptor activation hyperpolarizes medium spiny neurons projecting from the striatum to the GP and inhibits GABA release. However, using slice preparations from D2R-deficient [D2 knock-out (D2KO)] mice, we found that dopamine inhibited GABA(A)-receptor-mediated currents in GP neurons. The paired-pulse ratio was statistically unchanged after dopamine application but was significantly elevated in D2KO wild-type littermates (WT). Furthermore, in D2KO mice, outward currents elicited by iontophoretically applied GABA were suppressed by dopamine. Dopamine (30 microm) decreased the amplitude of miniature IPSCs in both WT and D2KO mice, but the decrease in the frequency was observed only in the former but not significantly in the latter. Dopamine-induced suppression of IPSCs was blocked by selective D4R antagonists (clozapine or 3-[4-(4-iodophenyl)piperazin-1-yl]methyl-1H-pyrrolo[2,3-b]pyridine trihydrochloride), and a D4R-selective agonist N-[[4-(2-cyanophenyl)-1-piperazinyl]methyl]-3-methyl-benzamide reversibly and dose-dependently suppressed IPSCs, whereas agonists [SKF38,393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride) or (+)-(4aR,10bR)-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol] or antagonists [SCH23,390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride) or sulpiride] of other receptor subtypes had little effect. In GP neurons from D4R-deficient mice, dopamine-induced inhibition of GABAergic outward currents was undetectable. D4R activation suppressed the activity of protein kinase A in GP neurons, resulting in a decrease in the amplitude of GABAergic IPSCs. These findings showed that postsynaptic activation of D4R on the GP neurons reduces GABAergic currents through the suppression of PKA activity.


Assuntos
Dopamina/farmacologia , Antagonistas GABAérgicos/farmacologia , Globo Pálido/fisiologia , Neurônios/fisiologia , Receptores de Dopamina D2/fisiologia , Transmissão Sináptica , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Condutividade Elétrica , Globo Pálido/citologia , Camundongos , Camundongos Knockout , Inibição Neural , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Técnicas de Patch-Clamp , Receptores de Dopamina D2/genética , Receptores de Dopamina D4 , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
20.
Hepatogastroenterology ; 52(61): 161-5, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15783019

RESUMO

BACKGROUND/AIMS: Prolonged paralytic ileus occurring in hepatectomized patients may induce hyperammonemia or bacterial translocation, which injures the remnant liver function and sometimes causes post-resection liver failure. We examined the effectiveness of the herbal medicine, Dai-kenchu-to (DKT), on postoperative serum ammonia levels in patients with liver resection and compared it with lactulose. METHODOLOGY: Patients with liver resection were divided into three groups. Lactulose group (n=31), 16g of lactulose was administered orally three times a day from the first postoperative day. DKT group (n=27), 5g of DKT was administered in the same fashion. Control group (n=26), neither lactulose nor DKT was administered. In all three groups, 16g of lactulose was administered three times a day for three days preoperatively. RESULTS: There was no significant difference among the groups in age, gender and preoperative hepatic functional values, such as ICG-R15 or galactose tolerance test. There was also no difference in parenchymal hepatic resection rate, operative time and amount of intraoperative bleeding volume. Postoperative serum ammonia levels were significantly lower in the DKT group than control and lactulose groups. Instances of delayed flatulence and occurrence of diarrhea were also fewer in the DKT group. CONCLUSIONS: DKT may become a more effective and safe agent than lactulose in postoperative management of liver resection.


Assuntos
Amônia/sangue , Medicamentos de Ervas Chinesas/farmacologia , Hepatectomia , Hepatopatias/sangue , Extratos Vegetais/farmacologia , Idoso , Esquema de Medicação , Medicamentos de Ervas Chinesas/administração & dosagem , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/farmacologia , Humanos , Lactulose/administração & dosagem , Lactulose/farmacologia , Hepatopatias/cirurgia , Masculino , Pessoa de Meia-Idade , Panax , Extratos Vegetais/administração & dosagem , Período Pós-Operatório , Zanthoxylum , Zingiberaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA