Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(23): 7365-7374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773217

RESUMO

Hydroponic cultivation of Solanum lycopersicum (tomato) is important, and high tomato production depends on the use of nitrogen and phosphate fertilizers. We had developed a microbial fertilizer (MF), which is mainly composed of nitrate. To investigate the effect of MF on plant growth, hydroponic tomato was grown with MF or commercial inorganic fertilizer (IF), and the microbiomes of the rhizosphere and the liquid phase were analyzed by confocal microscopy and high-throughput sequencing. Plant biomass and biofilm formation were increased by growth in MF compared to IF. The microbial community structures of tomato roots and hydroponic water differed between the two conditions, and three operational taxonomic units (OTUs) dominated in plants grown with MF. The three OTUs were related to Rudaea spp., Chitinophaga spp., and Stenotrophobacter terrae, which are reported to be disease-suppressive epiphytic or endophytic microbes of plant roots. Because these three OTUs also predominated in the MF itself, they were likely provided to the rhizosphere or endophytic environments of tomato roots via hydroponic water. KEY POINTS: • Microbial fertilizer for hydroponic growth enhanced biofilm formation on tomato root. • Microbial fertilizer contains tomato-root epiphytic or endophytic microbes. • Microbial fertilizer provided beneficial microbes to the rhizosphere and endophytic environments of tomato roots via hydroponic water.


Assuntos
Alphaproteobacteria , Solanum lycopersicum , Fertilizantes/microbiologia , Hidroponia , Microbiologia do Solo , Rizosfera , Água , Raízes de Plantas/microbiologia
2.
Water Res ; 197: 117088, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813172

RESUMO

A bacterium capable of complete ammonia oxidation (comammox) has been widely found in various environments, whereas its industrial application is limited due to the difficulty of cultivation and/or enrichment. We developed a biological system to produce a high-quality nitrate solution for use in hydroponic fertilizer. The system was composed of two separate reactors for ammonification and nitrification and was found to have a stable and efficient performance in the conversion of organic nitrogen to nitrate. To determine the key microbes involved and better understand the system, the microbial communities in the reactors were analyzed by 16S rRNA gene sequencing in combination with a shotgun metagenomic analysis. Canonical ammonia-oxidizing bacteria, which can only catalyze the oxidation of ammonia to nitrite, were detected with negligible relative abundances, while a comammox Nitrospira-related operational taxonomic unit (OTU) dominated the nitrification reactor. Furthermore, the comammox-type ammonia monooxygenase was found to be 500 times more highly expressed than the canonical one by quantitative PCR, indicating that comammox was the main driver of the stable and efficient ammonia oxidation in the system. A microbial co-occurrence analysis revealed a strong positive correlation between Nitrospira and several OTUs, some of which, such as Anaerolinea OTU, have been found to co-exist with comammox Nitrospira in the biofilms of water treatment systems. Given that these OTUs were abundant only on microbe-attached carriers in the system, their co-existence within the biofilm could be beneficial to stabilize the Nitrospira abundance, possibly by physically preventing oxygen exposure as well as cell spillage.


Assuntos
Nitratos , Águas Residuárias , Amônia , Archaea/genética , Bactérias/genética , Nitrificação , Nitrogênio , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
3.
Plant Physiol ; 144(1): 72-81, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17337527

RESUMO

The self-incompatibility system of the plant species Brassica is controlled by the S-locus, which contains S-RECEPTOR KINASE (SRK) and S-LOCUS PROTEIN11 (SP11). SP11 binding to SRK induces SRK autophosphorylation and initiates a signaling cascade leading to the rejection of self pollen. However, the mechanism controlling hydration and germination arrest during self-pollination is unclear. In this study, we examined the role of actin, a key cytoskeletal component regulating the transport system for hydration and germination in the papilla cell during pollination. Using rhodamine-phalloidin staining, we showed that cross-pollination induced actin polymerization, whereas self-pollination induced actin reorganization and likely depolymerization. By monitoring transiently expressed green fluorescent protein fused to the actin-binding domain of mouse talin, we observed the concentration of actin bundles at the cross-pollen attachment site and actin reorganization and likely depolymerization at the self-pollen attachment site; the results correspond to those obtained by rhodamine-phalloidin staining. We further showed that the coat of self pollen is sufficient to mediate this response. The actin-depolymerizing drug cytochalasin D significantly inhibited pollen hydration and germination during cross-pollination, further emphasizing a role for actin in these processes. Additionally, three-dimensional electron microscopic tomography revealed the close association of the actin cytoskeleton with an apical vacuole network. Self-pollination disrupted the vacuole network, whereas cross-pollination led to vacuolar rearrangements toward the site of pollen attachment. Taken together, our data suggest that self- and cross-pollination differentially affect the dynamics of the actin cytoskeleton, leading to changes in vacuolar structure associated with hydration and germination.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Brassica rapa/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Brassica rapa/fisiologia , Brassica rapa/ultraestrutura , Citocalasina D/farmacologia , Germinação , Proteínas de Fluorescência Verde/análise , Reprodução/fisiologia , Vacúolos/metabolismo , Vacúolos/ultraestrutura
4.
Plant Physiol ; 136(3): 3562-71, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15489279

RESUMO

Ca2+ dynamics in the growing pollen tube have been well documented in vitro using germination assays and Ca2+ imaging techniques. However, very few in vivo studies of Ca2+ in the pollen grain and papilla cell during pollination have been performed. We expressed yellow cameleon, a Ca2+ indicator based on green fluorescent protein, in the pollen grains and papilla cells of Arabidopsis (Arabidopsis thaliana) and monitored Ca2+ dynamics during pollination. In the pollen grain, [Ca2+]cyt increased at the potential germination site soon after hydration and remained augmented until germination. As in previous in vitro germination studies, [Ca2+]cyt oscillations were observed in the tip region of the growing pollen tube, but the oscillation frequency was faster and [Ca2+]cyt was higher than had been observed in vitro. In the pollinated papilla cell, remarkable increases in [Ca2+]cyt occurred three times in succession, just under the site of pollen-grain attachment. [Ca2+]cyt increased first soon after pollen hydration, with a second increase occurring after pollen protrusion. The third and most remarkable [Ca2+]cyt increase took place when the pollen tube penetrated into the papilla cell wall.


Assuntos
Arabidopsis/fisiologia , Cálcio/metabolismo , Pólen/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Células Cultivadas , Flores/citologia , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA