Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Strength Cond Res ; 36(8): 2322-2325, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044361

RESUMO

ABSTRACT: Kumagai, H, Miyamoto-Mikami, E, Kikuchi, N, Kamiya, N, Zempo, H, and Fuku, N. A rs936306 C/T polymorphism in the CYP19A1 is associated with stress fractures. J Strength Cond Res 36(8): 2322-2325, 2022-A stress fracture (SF) is an overuse injury, and low bone mineral density (BMD) is the risk factor for the SF. Estrogen is suggested to have a crucial role in bone metabolism, and estrogen-related genetic polymorphisms are associated with BMD. However, the possible association between SF and estrogen-related genetic polymorphisms has not been clarified yet. Therefore, we aimed to clarify whether estrogen-related genetic polymorphisms are associated with a history of SFs in Japanese athletes. A total of 1,311 (men: n = 868, women: n = 443) top-level Japanese athletes who participated in various sports and at different levels were analyzed. The history of SFs was assessed using a questionnaire, and the cytochrome P450 aromatase gene ( CYP19A1 ) rs936306 C/T and estrogen receptor α gene ( ESR1 ) rs2234693 T/C polymorphisms were analyzed using the TaqMan genotyping assay. The genotype frequency of the CYP19A1 C/T polymorphism was significantly different between the injured group and noninjured group under the C allele additive genetic model (odds ratio = 1.31, 95% confidence interval = 1.01-1.70), especially in men and in women with irregular menstruation. On the other hand, there were no significant differences with the ESR1 T/C polymorphism. This study demonstrated that the C allele in the CYP19A1 rs936306 polymorphism is a risk factor for SFs in top-level Japanese athletes.


Assuntos
Aromatase , Fraturas de Estresse , Aromatase/genética , Densidade Óssea/genética , Estrogênios , Feminino , Fraturas de Estresse/genética , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
2.
Physiol Genomics ; 52(12): 588-589, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166209

RESUMO

The myotendinous junction (MTJ) is at high risk of muscle injury, and collagen XXII is strictly expressed at tissue junctions, specifically at the MTJ. We investigated the hypothesis that single-nucleotide polymorphisms (SNPs) related to collagen type XXII α-1 chain gene (COL22A1) mRNA expression are associated with susceptibility to muscle injury in athletes. History of muscle injury was assessed in 3,320 Japanese athletes using a questionnaire, and two expression quantitative trait loci (eQTL) SNPs for COL22A1 (rs11784270 A/C and rs6577958 T/C) were analyzed using the TaqMan SNP Genotyping Assay. rs11784270 [odds ratio (OR) = 1.80, 95% confidence interval (CI) = 1.27-2.62, P = 0.0006] and rs6577958 (OR = 1.45, 95% CI = 1.10-1.94, P = 0.0083) were significantly associated with muscle injury under A and T allele additive genetic models, respectively. These results suggest that the expression level of COL22A1 at the MTJ influences muscle injury risk in athletes.


Assuntos
Atletas , Colágeno/genética , Músculos/lesões , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Adolescente , Alelos , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Humanos , Japão/epidemiologia , Masculino , Fenótipo , Saliva , Lesões dos Tecidos Moles/epidemiologia , Lesões dos Tecidos Moles/genética , Adulto Jovem
3.
Eur J Appl Physiol ; 120(3): 665-673, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31970519

RESUMO

PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes.


Assuntos
Proteína da Hemocromatose/genética , Resistência Física/genética , Atletas , Estudos de Casos e Controles , Humanos , Polimorfismo de Nucleotídeo Único
4.
J Sports Sci ; 38(21): 2423-2429, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32614675

RESUMO

ACE I/D polymorphism has been recently associated with the susceptibility to inflammation and muscle damage after exercise. The aim of this study was to understand the association between the ACE I/D polymorphism and muscle injuries in a large cohort of elite football players from two different countries. Seven hundred and ten male elite football players from Italy (n = 341) and Japan (n = 369) were recruited for the study. Genomic DNA was extracted from either the buccal epithelium or saliva using a standard protocol. Structural-mechanical injuries and functional muscle disorders were recorded from 2009 to 2018. A meta-analysis was performed using Review Manager 5.3.5. In the Japanese cohort, the ACE I/D polymorphism was significantly associated with muscle injury using the D-dominant model (OR: 0.48, 95% CI: 0.24-0.97, P = 0.040). The meta-analysis showed that in the pooled model (Italian and Japanese populations), the frequencies of the DD+ID genotypes were significantly lower in the injured groups than in non-injured groups (OR: 0.61, 95% CI: 0.38-0.98, P = 0.04) with a low degree of heterogeneity (I2  = 0%). Our findings suggest that the ACE I/D polymorphism could influence the susceptibility to developing muscle injuries among football players.


Assuntos
Músculo Esquelético/lesões , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Futebol/lesões , Predisposição Genética para Doença , Genótipo , Humanos , Itália , Japão , Masculino , Adulto Jovem
5.
BMC Med Genet ; 20(1): 192, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791263

RESUMO

BACKGROUND: Poor joint flexibility has been repeatedly proposed as a risk factor for muscle injury. The C-to-T polymorphism (rs12722) in the 3'-untranslated region of the collagen type V α1 chain gene (COL5A1) is reportedly associated with joint flexibility. Flexibility of a normal joint is largely determined by passive muscle stiffness, which is influenced by intramuscular collagenous connective tissues including type V collagen. The present study aimed to test the hypothesis that the COL5A1 rs12722 polymorphism influences joint flexibility via passive muscle stiffness, and is accordingly associated with the incidence of muscle injury. METHODS: In Study 1, we examined whether the rs12722 polymorphism is associated with joint flexibility and passive muscle stiffness in 363 healthy young adults. Joint flexibility was evaluated by passive straight-leg-raise and sit-and-reach tests, and passive muscle stiffness was measured using ultrasound shear wave elastography. In Study 2, the association of the rs12722 polymorphism with sports-related muscle injury was assessed in 1559 Japanese athletes. Muscle injury history and severity were assessed by a questionnaire. In both Study 1 and Study 2, the rs12722 C-to-T polymorphism in the COL5A1 was determined using the TaqMan SNP Genotyping Assay. RESULTS: Study 1 revealed that the rs12722 polymorphism had no significant effect on range of motion in passive straight-leg-raise and sit-and-reach tests. Furthermore, there was no significant difference in passive muscle stiffness of the hamstring among the rs12722 genotypes. In Study 2, rs12722 genotype frequencies did not differ between the muscle injury and no muscle injury groups. Moreover, no association was observed between rs12722 polymorphism and severity of muscle injury. CONCLUSIONS: The present study does not support the view that COL5A1 rs12722 polymorphism has a role as a risk factor for sports-related muscle injury, or that it is a determinant for passive muscle stiffness in a Japanese population.


Assuntos
Traumatismos em Atletas/genética , Colágeno Tipo V/genética , Músculo Esquelético/lesões , Polimorfismo de Nucleotídeo Único , Amplitude de Movimento Articular/genética , Esportes , Adolescente , Feminino , Humanos , Japão , Masculino , Fatores de Risco , Adulto Jovem
6.
Int J Sports Med ; 39(2): 110-114, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29190853

RESUMO

The passive straight-leg-raise (PSLR) and the sit-and-reach (SR) tests have been widely used to assess hamstring extensibility. However, it remains unclear to what extent hamstring stiffness (a measure of material properties) contributes to PSLR and SR test scores. Therefore, we aimed to clarify the relationship between hamstring stiffness and PSLR and SR scores using ultrasound shear wave elastography. Ninety-eight healthy subjects completed the study. Each subject completed PSLR testing, and classic and modified SR testing of the right leg. Muscle shear modulus of the biceps femoris, semitendinosus, and semimembranosus was quantified as an index of muscle stiffness. The relationships between shear modulus of each muscle and PSLR or SR scores were calculated using Pearson's product-moment correlation coefficients. Shear modulus of the semitendinosus and semimembranosus showed negative correlations with the two PSLR and two SR scores (absolute r value≤0.484). Shear modulus of the biceps femoris was significantly correlated with the PSLR score determined by the examiner and the modified SR score (absolute r value≤0.308). The present findings suggest that PSLR and SR test scores are strongly influenced by factors other than hamstring stiffness and therefore might not accurately evaluate hamstring stiffness.


Assuntos
Teste de Esforço , Exercício Físico/fisiologia , Músculos Isquiossurais/fisiologia , Fenômenos Biomecânicos/fisiologia , Técnicas de Imagem por Elasticidade , Feminino , Músculos Isquiossurais/diagnóstico por imagem , Humanos , Masculino , Coxa da Perna/diagnóstico por imagem , Coxa da Perna/fisiologia , Adulto Jovem
7.
Biol Sport ; 35(2): 105-109, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30455538

RESUMO

We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I 2 =0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/power track and field athlete status in men, but not in women.

8.
Am J Physiol Regul Integr Comp Physiol ; 312(4): R520-R528, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122719

RESUMO

The purpose of this study was to investigate the effect of chronic chlorella intake alone or in combination with high-intensity intermittent exercise (HIIE) training on exercise performance and muscle glycolytic and oxidative metabolism in rats. Forty male Sprague-Dawley rats were randomly assigned to the four groups: sedentary control, chlorella intake (0.5% chlorella powder in normal feed), HIIE training, and combination of HIIE training and chlorella intake for 6 wk (n = 10 each group). HIIE training comprised 14 repeats of a 20-s swimming session with a 10-s pause between sessions, while bearing a weight equivalent to 16% of body weight, 4 days/week. Exercise performance was tested after the interventions by measuring the maximal number of HIIE sessions that could be completed. Chlorella intake and HIIE training significantly increased the maximal number of HIIE sessions and enhanced the expression of monocarboxylate transporter (MCT)1, MCT4, and peroxisome proliferator-activated receptor γ coactivator-1α concomitantly with the activities of lactate dehydrogenase (LDH), phosphofructokinase, citrate synthase (CS), and cytochrome-c oxidase (COX) in the red region of the gastrocnemius muscle. Furthermore, the combination further augmented the increased exercise performance and the enhanced expressions and activities. By contrast, in the white region of the muscle, MCT1 expression and LDH, CS, and COX activities did not change. These results showed that compared with only chlorella intake and only HIIE training, chlorella intake combined with HIIE training has a more pronounced effect on exercise performance and muscle glycolytic and oxidative metabolism, in particular, lactate metabolism.


Assuntos
Chlorella , Tolerância ao Exercício/fisiologia , Glicólise/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Probióticos/administração & dosagem , Animais , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/microbiologia , Ratos , Ratos Sprague-Dawley , Natação/fisiologia , Análise e Desempenho de Tarefas
9.
Eur J Appl Physiol ; 116(5): 911-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26945574

RESUMO

PURPOSE: It remains unclear whether the acute effect of stretching on passive muscle stiffness differs among the synergists. We examined the muscle stiffness responses of the medial (MG) and lateral gastrocnemii (LG), and soleus (Sol) during passive dorsiflexion before and after a static stretching by using ultrasound shear wave elastography. METHODS: Before and after a 5-min static stretching by passive dorsiflexion, shear modulus of the triceps surae and the Achilles tendon (AT) during passive dorsiflexion in the knee extended position were measured in 12 healthy subjects. RESULTS: Before the static stretching, shear modulus was the greatest in MG and smallest in Sol. The stretching induced significant reductions in shear modulus of MG, but not in shear modulus of LG and Sol. The slack angle was observed at more plantar flexed position in the following order: AT, MG, LG, and Sol. After the stretching, the slack angles of each muscle and AT were significantly shifted to more dorsiflexed positions with a similar extent. When considering the shift in slack angle, the change in MG shear modulus became smaller. CONCLUSION: The present study indicates that passive muscle stiffness differs among the triceps surae, and that the acute effect of a static stretching is observed only in the stiff muscle. However, a large part of the reduction of passive muscle stiffness at a given joint angle could be due to an increase in the slack length.


Assuntos
Elasticidade/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Tendão do Calcâneo/fisiologia , Adulto , Técnicas de Imagem por Elasticidade/métodos , Feminino , Humanos , Articulação do Joelho/fisiologia , Masculino , Exercícios de Alongamento Muscular/métodos , Adulto Jovem
10.
Med Sci Sports Exerc ; 55(7): 1184-1194, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893302

RESUMO

PURPOSE: A ketone body (ß-hydroxybutyrate [ß-HB]) is used as an energy source in the peripheral tissues. However, the effects of acute ß-HB supplementation on different modalities of exercise performance remain unclear. This study aimed to assess the effects of acute ß-HB administration on the exercise performance of rats. METHODS: In study 1, Sprague-Dawley rats were randomly divided into six groups: endurance exercise (EE + PL and EE + KE), resistance exercise (RE + PL and RE + KE), and high-intensity intermittent exercise (HIIE + PL and HIIE + KE) with placebo (PL) or ß-HB salt (KE) administration. In study 2, metabolome analysis using capillary electrophoresis mass spectrometry was performed to profile the effects of ß-HB salt administration on HIIE-induced metabolic responses in the skeletal and heart muscles. RESULTS: The maximal carrying capacity (rest for 3 min after each ladder climb, while carrying heavy weights until the rats could not climb) in the RE + KE group was higher than that in the RE + PL group. The maximum number of HIIE sessions (a 20-s swimming session with a 10-s rest between sessions, while bearing a weight equivalent to 16% of body weight) in the HIIE + KE group was higher than that in the HIIE + PL group. However, there was no significant difference in the time to exhaustion at 30 m·min -1 between the EE + PL and the EE + KE groups. Metabolome analysis showed that the overall tricarboxylic acid cycle and creatine phosphate levels in the skeletal muscle were higher in the HIIE + KE group than those in the HIIE + PL group. CONCLUSIONS: These results indicate that acute ß-HB salt administration may accelerate HIIE and RE performance, and the changes in metabolic responses in the skeletal muscle after ß-HB salt administration may be involved in the enhancement of HIIE performance.


Assuntos
Condicionamento Físico Animal , Natação , Animais , Ratos , Ácido 3-Hidroxibutírico , Ratos Sprague-Dawley , Condicionamento Físico Animal/fisiologia , Corpos Cetônicos
11.
Eur J Sport Sci ; 23(6): 955-963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35593181

RESUMO

This study aimed to examine how genetic polymorphisms related to muscular strength and flexibility influence artistic gymnastic performance in an attempt to identify a novel polymorphism associated with flexibility. In study 1, the passive straight-leg-raise (PSLR) score and aromatase gene CYP19A1 rs936306 polymorphism, a key enzyme for estrogen biosynthesis, were assessed in 278 individuals. In study 2, athletes (281 gymnasts and 1908 other athletes) were asked about their competition level, and gymnasts were assessed using the difficulty score (D-score) for each event. Muscular strength- (ACTN3 R577X rs1815739 and ACE I/D rs4341) and flexibility-related (ESR1 rs2234693 T/C and CYP19A1 rs936306 C/T) genetic polymorphisms were analyzed. In study 1, males with the CYP19A1 CT + TT genotype showed significantly higher PSLR scores than those with the CC genotype. In study 2, male gymnasts with the R allele of ACTN3 R577X showed a correlation with the floor, rings, vault, and total D-scores. In addition, male gymnasts with the C allele of ESR1 T/C and T allele of CYP19A1 C/T polymorphisms were correlated with the pommel horse, parallel bars, horizontal bar, and total D-scores. Furthermore, genotype scores of these three polymorphisms correlated with the total D-scores and competition levels in male gymnasts. In contrast, no such associations were observed in female gymnasts. Our findings suggest that muscular strength- and flexibility-related polymorphisms play important roles in achieving high performance in male artistic gymnastics by specifically influencing the performance of events that require muscular strength and flexibility, respectively.HighlightsEstrogen-related CYP19A1 polymorphism is a novel determinant of flexibility in males.Muscular strength- and flexibility-related polymorphisms play important roles in high performance in male artistic gymnastics.Genotypes of ACTN3 R577X, ESR1 rs2234693, and CYP19A1 rs936306 may contribute to training plan optimization and event selection in artistic gymnastics.


Assuntos
População do Leste Asiático , Ginástica , Força Muscular , Amplitude de Movimento Articular , Feminino , Humanos , Masculino , Actinina/genética , Desempenho Atlético/fisiologia , Genótipo , Ginástica/fisiologia , Força Muscular/genética , Polimorfismo Genético , Amplitude de Movimento Articular/genética
12.
Eur J Sport Sci ; 23(2): 284-293, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821541

RESUMO

Previous small-scale studies have shown an association between the COL5A1 gene and anterior cruciate ligament (ACL) injury risk. In this larger study, the genotype and allele frequency distributions of the COL5A1 rs12722 C/T and rs10628678 AGGG/deletion (AGGG/-) indel variants were compared between participants: (i) with ACL injury in independent and combined cohorts from South-Africa (SA) and Australia (AUS) vs controls (CON), and (ii) with any ligament (ALL) or only ACL injury in a Japanese (JPN) cohort vs CON. Samples were collected from SA (235 cases; 232 controls), AUS (362 cases; 80 controls) and JPN (500 cases; 1,403 controls). Genomic DNA was extracted and genotyped. Distributions were compared, and inferred haplotype analyses performed. No independent associations were noted for rs12722 or rs10628678 when the combined SA + AUS cohort was analysed. However, the C-deletion (rs12722-rs10628678) inferred haplotype was under-represented (p = 0.040, OR = 0.15, CI = 0.04-0.56), while the T-deletion inferred haplotype was over-represented in the female SA + AUS ACL participants versus controls (p < 0.001, OR = 4.74, CI = 1.66-13.55). Additionally, the rs12722 C/C genotype was under-represented in JPN CON vs ACL (p = 0.039, OR = 0.52, 0.27-1.00), while the rs10628678 -/- genotype was associated with increased risk of any ligament injuries (p = 0.035, OR = 1.31, CI = 1.02-1.68) in the JPN cohort. Collectively, these results highlight that a region within the COL5A1 3'-UTR is associated with ligament injury risk. This must be evaluated in larger cohorts and its functional relevance to the structure and capacity of ligaments and joint biomechanics be explored.Highlights The COL5A1 T-deletion inferred haplotype (rs12722-rs10628678) was associated with an increased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 C-deletion inferred haplotype (rs12722-rs10628678) was associated with a decreased risk of ACL rupture in the combined SA and AUS female participants.The COL5A1 rs12722 C/C and rs10628678 -/- genotypes were associated with increased risk of ACL rupture and of ligament injuries in JPN, respectively.A region within the COL5A1 3'-UTR is associated with risk of ligament injury, including ACL rupture, and therefore the functional significance of this region on ligament capacity and joint biomechanics requires further exploration.


Assuntos
Lesões do Ligamento Cruzado Anterior , Humanos , Feminino , África do Sul , Japão , Colágeno Tipo V/genética , Genótipo , Estudos de Casos e Controles
13.
J Appl Physiol (1985) ; 132(4): 966-973, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35175101

RESUMO

This study aimed to clarify 1) the influence of genetic polymorphisms in the cytochrome P450 aromatase gene (CYP19A1) on circulating estradiol levels in men and 2) whether estrogen-related genetic polymorphisms, such as the CYP19A1 rs936306 and estrogen receptor-α (ESR1) rs2234693 polymorphisms, predict exercise-induced serum creatine kinase (CK) activity, which is an index of skeletal muscle membrane disruption. Serum estradiol levels were examined in young men (n = 167). In a different cohort, serum CK activity was analyzed in a 2-day ultramarathon race: baseline, after the first day, and after the second day (114 males and 25 females). Genetic polymorphisms in CYP19A1 rs936306 C/T and ESR1 rs2234693 T/C were analyzed using the TaqMan SNP Genotyping Assay. Male subjects with the TT genotype of the CYP19A1 polymorphism exhibited significantly higher serum estradiol levels than the C allele carriers. Male runners had significantly higher postrace serum CK activity than female runners. The change in the CK activity during the ultramarathon race was significantly lower in male subjects with the CYP19A1 TT genotype than in those with the CC + CT genotypes and was correlated with the number of C alleles in ESR1 rs2234693 in male subjects. Furthermore, the genotype scores of these two polymorphisms were significantly correlated with changes in serum CK activity during race (r = -0.279, P = 0.003). The results of this study suggest that genetic polymorphisms in CYP19A1 rs936306 influence serum estradiol levels in men, and genetic polymorphisms in CYP19A1 and ESR1 are associated with serum CK activity in men.NEW & NOTEWORTHY Men with the TT genotype of the CYP19A1 polymorphism exhibited higher circulating estradiol levels than the TC + CC genotype. The TT genotype in the CYP19A1 polymorphism and the C allele of the ESR1 polymorphism, an allele increasing ESR1 expression, were associated with low serum CK activity after the ultramarathon. A combination of these polymorphisms was correlated with changes in the serum CK activity. Therefore, estrogen-related genetic polymorphisms partially predict exercise-induced muscle damage, that is, skeletal muscle membrane disruption.


Assuntos
Aromatase , Creatina Quinase , Receptor alfa de Estrogênio , Corrida , Aromatase/genética , Estudos de Coortes , Creatina Quinase/sangue , Receptor alfa de Estrogênio/genética , Feminino , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
14.
J Orthop Surg Res ; 17(1): 501, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403051

RESUMO

BACKGROUND: Hamstring tendons are a popular choice for autografts in anterior cruciate ligament (ACL) reconstruction. However, there is increasing evidence that hamstring tendon autografts carry a high risk of revision and residual instability in young patients. To elucidate the reasons for the inferior outcome of the reconstructed ACL with hamstring tendon autografts in young patients, we investigated the Young's modulus and the extent of cyclic loading-induced slackening of the semitendinosus tendon used for ACL reconstruction across a broad range of ages. METHODS: Twenty-six male patients (aged 17-53 years), who were scheduled for ACL reconstruction surgery using the semitendinosus tendon autograft, participated in this study. The distal portion of the harvested semitendinosus tendon, which was not used to construct the autograft, was used for cyclic tensile testing to calculate the Young's modulus and the extent of slackening (i.e., increase in slack length). RESULTS: Spearman correlation analysis revealed that the Young's modulus of the semitendinosus tendon was positively correlated with the patient's age (ρ = 0.559, P = 0.003). In contrast, the extent of tendon slackening did not correlate with the patient's age. CONCLUSIONS: We demonstrated that the Young's modulus of the semitendinosus tendon increases with age, indicating that the semitendinosus tendon used for ACL reconstruction is compliant in young patients.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Tendões dos Músculos Isquiotibiais , Humanos , Masculino , Tendões/transplante , Autoenxertos , Transplante Autólogo
15.
Physiol Rep ; 10(12): e15364, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35757903

RESUMO

This study aimed to assess (1) blood pressure between young, current athletes, and non-athletes early in life; (2) hypertension prevalence between former athletes and the general population later in life; and (3) understand the mechanisms between exercise training and hypertension risks in the form of DNA methylation. Study 1: A total of 354 young male participants, including current athletes, underwent blood pressure assessment. Study 2: The prevalence of hypertension in 1269 male former athletes was compared with that in the Japanese general population. Current and former athletes were divided into three groups: endurance-, mixed-, and sprint/power-group. Study 3: We analyzed the effect of aerobic- or resistance-training on DNA methylation patterns using publicly available datasets to explore the possible underlying mechanisms. In young, current athletes, the mixed- and sprint/power-group exhibited higher systolic blood pressure, and all groups exhibited higher pulse pressure than non-athletes. In contrast, the prevalence of hypertension in former athletes was significantly lower in all groups than in the general population. Compared to endurance-group (reference), adjusted-hazard ratios for the incidence of hypertension among mixed- and sprint/power-group were 1.24 (0.87-1.84) and 1.50 (1.04-2.23), respectively. Moreover, aerobic- and resistance-training commonly modified over 3000 DNA methylation sites in skeletal muscle, and these were suggested to be associated with cardiovascular function-related pathways. These findings suggest that the high blood pressure induced by exercise training at a young age does not influence the development of future hypertension. Furthermore, previous exercise training experiences at a young age could decrease the risk of future hypertension.


Assuntos
Hipertensão , Esportes , Atletas , Pressão Sanguínea , Exercício Físico/fisiologia , Humanos , Hipertensão/epidemiologia , Masculino , Esportes/fisiologia
16.
Skelet Muscle ; 12(1): 16, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780170

RESUMO

BACKGROUND: Skeletal muscle fiber type distribution has implications for human health, muscle function, and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested. METHODS: By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22). RESULTS: The correlation between the sequencing-based method and the other two were rATPas = 0.44 [0.13-0.67], [95% CI], and rmyosin = 0.83 [0.61-0.93], with p = 5.70 × 10-3 and 2.00 × 10-6, respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~ 10,000 paired-end reads. CONCLUSIONS: This new method ( https://github.com/OlaHanssonLab/PredictFiberType ) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies.


Assuntos
Fibras Musculares Esqueléticas , RNA , Sequência de Bases , Humanos , Análise de Sequência de RNA , Sequenciamento do Exoma
17.
Cells ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36497168

RESUMO

Muscle fiber composition is associated with physical performance, with endurance athletes having a high proportion of slow-twitch muscle fibers compared to power athletes. Approximately 45% of muscle fiber composition is heritable, however, single nucleotide polymorphisms (SNP) underlying inter-individual differences in muscle fiber types remain largely unknown. Based on three whole genome SNP datasets, we have shown that the rs236448 A allele located near the cyclin-dependent kinase inhibitor 1A (CDKN1A) gene was associated with an increased proportion of slow-twitch muscle fibers in Russian (n = 151; p = 0.039), Finnish (n = 287; p = 0.03), and Japanese (n = 207; p = 0.008) cohorts (meta-analysis: p = 7.9 × 10−5. Furthermore, the frequency of the rs236448 A allele was significantly higher in Russian (p = 0.045) and Japanese (p = 0.038) elite endurance athletes compared to ethnically matched power athletes. On the contrary, the C allele was associated with a greater proportion of fast-twitch muscle fibers and a predisposition to power sports. CDKN1A participates in cell cycle regulation and is suppressed by the miR-208b, which has a prominent role in the activation of the slow myofiber gene program. Bioinformatic analysis revealed that the rs236448 C allele was associated with increased CDKN1A expression in whole blood (p = 8.5 × 10−15) and with greater appendicular lean mass (p = 1.2 × 10−5), whereas the A allele was associated with longer durations of exercise (p = 0.044) reported amongst the UK Biobank cohort. Furthermore, the expression of CDKN1A increased in response to strength (p < 0.0001) or sprint (p = 0.00035) training. Accordingly, we found that CDKN1A expression is significantly (p = 0.002) higher in the m. vastus lateralis of strength athletes compared to endurance athletes and is positively correlated with the percentage of fast-twitch muscle fibers (p = 0.018). In conclusion, our data suggest that the CDKN1A rs236448 SNP may be implicated in the determination of muscle fiber composition and may affect athletic performance.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Estudo de Associação Genômica Ampla , Fibras Musculares Esqueléticas , Fibras Musculares de Contração Lenta , Humanos , Atletas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares de Contração Lenta/fisiologia
18.
Biochim Biophys Acta Gen Subj ; 1866(2): 130048, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728329

RESUMO

Human skeletal muscle fiber is heterogenous due to its diversity of slow- and fast-twitch fibers. In human, slow-twitched fiber gene expression is correlated to MOTS-c, a mitochondria-derived peptide that has been characterized as an exercise mimetic. Within the MOTS-c open reading frame, there is an East Asian-specific m.1382A>C polymorphism (rs111033358) that changes the 14th amino acid of MOTS-c (i.e., K14Q), a variant of MOTS-c that has less biological activity. Here, we examined the influence of the m.1382A>C polymorphism causing MOTS-c K14Q on skeletal muscle fiber composition and physical performance. The myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx) as an indicator of muscle fiber composition were assessed in 211 Japanese healthy individuals (102 men and 109 women). Muscular strength was measured in 86 physically active young Japanese men by using an isokinetic dynamometer. The allele frequency of the m.1382A>C polymorphism was assessed in 721 Japanese athletes and 873 ethnicity-matched controls. The m.1382A>C polymorphism genotype was analyzed by TaqMan SNP Genotyping Assay. Individuals with the C allele of the m.1382A>C exhibited a higher proportion of MHC-IIx, an index of fast-twitched fiber, than the A allele carriers. Men with the C allele of m.1382A>C exhibited significantly higher peak torques of leg flexion and extension. Furthermore, the C allele frequency was higher in the order of sprint/power athletes (6.5%), controls (5.1%), and endurance athletes (2.9%). Additionally, young male mice were injected with the MOTS-c neutralizing antibody once a week for four weeks to mimic the C allele of the m.1382A>C and assessed for protein expression levels of MHC-fast and MHC-slow. Mice injected with MOTS-c neutralizing antibody showed a higher expression of MHC-fast than the control mice. These results suggest that the C allele of the East Asian-specific m.1382A>C polymorphism leads to the MOTS-c K14Q contributes to the sprint/power performance through regulating skeletal muscle fiber composition.


Assuntos
DNA Mitocondrial
19.
Genes (Basel) ; 13(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052344

RESUMO

Human muscle fiber composition is heterogeneous and mainly determined by genetic factors. A previous study reported that experimentally induced iron deficiency in rats increases the proportion of fast-twitch muscle fibers. Iron status has been reported to be affected by genetic factors. As the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms are strongly associated with iron status in humans, we hypothesized that the genotype score (GS) based on these polymorphisms could be associated with the muscle fiber composition in humans. Herein, we examined 214 Japanese individuals, comprising of 107 men and 107 women, for possible associations of the GS for iron status with the proportion of myosin heavy chain (MHC) isoforms (I, IIa, and IIx) as markers of muscle fiber composition. No statistically significant correlations were found between the GS for iron status and the proportion of MHC isoforms in all participants. When the participants were stratified based on sex, women showed positive and negative correlations of the GS with MHC-IIa (age-adjusted p = 0.020) and MHC-IIx (age-adjusted p = 0.011), respectively. In contrast, no correlation was found in men. In women, a 1-point increase in the GS was associated with 2.42% higher MHC-IIa level and 2.72% lower MHC-IIx level. Our results suggest that the GS based on the TMPRSS6 rs855791 T/C and HFE rs1799945 C/G polymorphisms for iron status is associated with muscle fiber composition in women.


Assuntos
Genótipo , Ferro/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Adolescente , Adulto , Feminino , Humanos , Japão , Complexo Principal de Histocompatibilidade/genética , Masculino , Proteínas de Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/genética , Polimorfismo Genético , Serina Endopeptidases/genética , Adulto Jovem
20.
Med Sci Sports Exerc ; 53(9): 1855-1864, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731655

RESUMO

PURPOSE: We aimed to investigate the hypothesis that type I collagen plays a role in increasing bone mineral density (BMD) and muscle stiffness, leading to low and high risks of fatigue fracture and muscle injury, respectively, in athletes. As a potential mechanism, we focused on the effect of the type I collagen alpha 1 chain gene (COL1A1) variant associated with transcriptional activity on bone and skeletal muscle properties. METHODS: The association between COL1A1 rs1107946 and fatigue fracture/muscle injury was evaluated in Japanese athletes. Effects of the polymorphism on tissue properties (BMD and muscle stiffness) and type I collagen α1/α2 chain ratios in muscles were examined in Japanese nonathletes. RESULTS: The C-allele carrier frequency was greater in female athletes with fatigue fracture than in those without (odds ratio = 2.44, 95% confidence interval [CI] = 1.17-5.77) and lower in female athletes with muscle injury than in those without (odds ratio = 0.46, 95% CI = 0.24-0.91). Prospective validation analysis confirmed that in female athletes, muscle injury was less frequent in C-allele carriers than in AA genotype carriers (multivariable-adjusted hazard ratio = 0.27, 95% CI = 0.08-0.96). Among female nonathletes, the C-allele of rs1107946 was associated with lower BMD and lower muscle stiffness. Muscle biopsy revealed that C-allele carriers tended to have a larger type I collagen α1/α2 chain ratio than AA genotype carriers (2.24 vs 2.05, P = 0.056), suggesting a higher proportion of type I collagen α1 homotrimers. CONCLUSION: The COL1A1 rs1107946 polymorphism exerts antagonistic effects on fatigue fracture and muscle injury among female athletes by altering the properties of these tissues, potentially owing to increased levels of type I collagen α1 chain homotrimers.


Assuntos
Colágeno Tipo I/genética , Fraturas de Estresse/genética , Predisposição Genética para Doença , Músculo Esquelético/lesões , Adulto , Feminino , Humanos , Japão , Masculino , Polimorfismo Genético , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA