Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 385(3): 193-204, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001988

RESUMO

Loss of orexin neurons is associated with narcolepsy type 1 (NT1), which is characterized by multiple symptoms including excessive daytime sleepiness and cataplexy. Orexin 2 receptor (OX2R) knockout (KO) mice, but not orexin 1 receptor (OX1R) KO mice, show narcolepsy-like phenotypes, thus OX2R agonists are potentially promising for treating NT1. In fact, in early proof-of-concept studies, intravenous infusion of danavorexton, an OX2R-selective agonist, significantly increased wakefulness in individuals with NT1. However, danavorexton has limited oral availability. Here, we report pharmacological characteristics of a novel OX2R agonist, TAK-994 [N-{(2S,3S)-1-(2-hydroxy-2-methylpropanoyl)-2-[(2,3',5'-trifluorobiphenyl-3-yl)methyl]pyrrolidin-3-yl}methanesulfonamide sesquihydrate]. TAK-994 activated recombinant human OX2R (EC50 value of 19 nM) with > 700-fold selectivity against OX1R and activated OX2R-downstream signaling similar to those by orexin peptides in vitro. Oral administration of TAK-994 promoted wakefulness in normal mice but not in OX2R KO mice. TAK-994 also ameliorated narcolepsy-like symptoms in two mouse models of narcolepsy: orexin/ataxin-3 mice and orexin-tTA;TetO diphtheria toxin A mice. The wake-promoting effects of TAK-994 in orexin/ataxin-3 mice were maintained after chronic dosing for 14 days. These data suggest that overall in vitro and in vivo properties, except oral availability, are very similar between TAK-994 and danavorexton. Preclinical characteristics of TAK-994 shown here, together with upcoming clinical study results, can improve our understanding for orally available OX2R agonists as new therapeutic drugs for NT1 and other hypersomnia disorders. SIGNIFICANCE STATEMENT: Narcolepsy type 1 (NT1) is caused by a loss of orexin neurons, and thus an orexin 2 receptor (OX2R) agonist is considered to address the underlying pathophysiology of NT1. Oral administration of TAK-994, a novel OX2R agonist, promoted wakefulness in normal mice, but not in OX2R knockout mice, and ameliorated fragmentation of wakefulness and cataplexy-like episodes in mouse models of narcolepsy. These findings indicate that TAK-994 is an orally available brain-penetrant OX2R-selective agonist with potential to improve narcolepsy-like symptoms.


Assuntos
Cataplexia , Narcolepsia , Camundongos , Humanos , Animais , Cataplexia/tratamento farmacológico , Vigília , Ataxina-3 , Sono/genética , Narcolepsia/tratamento farmacológico , Narcolepsia/genética , Orexinas/genética , Orexinas/metabolismo , Orexinas/farmacologia , Encéfalo/metabolismo , Camundongos Knockout , Receptores de Orexina/agonistas , Receptores de Orexina/genética , Receptores de Orexina/uso terapêutico
2.
Nat Commun ; 13(1): 2902, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614071

RESUMO

The OX2 orexin receptor (OX2R) is a highly expressed G protein-coupled receptor (GPCR) in the brain that regulates wakefulness and circadian rhythms in humans. Antagonism of OX2R is a proven therapeutic strategy for insomnia drugs, and agonism of OX2R is a potentially powerful approach for narcolepsy type 1, which is characterized by the death of orexinergic neurons. Until recently, agonism of OX2R had been considered 'undruggable.' We harness cryo-electron microscopy of OX2R-G protein complexes to determine how the first clinically tested OX2R agonist TAK-925 can activate OX2R in a highly selective manner. Two structures of TAK-925-bound OX2R with either a Gq mimetic or Gi reveal that TAK-925 binds at the same site occupied by antagonists, yet interacts with the transmembrane helices to trigger activating microswitches. Our structural and mutagenesis data show that TAK-925's selectivity is mediated by subtle differences between OX1 and OX2 receptor subtypes at the orthosteric pocket. Finally, differences in the polarity of interactions at the G protein binding interfaces help to rationalize OX2R's coupling selectivity for Gq signaling. The mechanisms of TAK-925's binding, activation, and selectivity presented herein will aid in understanding the efficacy of small molecule OX2R agonists for narcolepsy and other circadian disorders.


Assuntos
Narcolepsia , Vigília , Microscopia Crioeletrônica , Humanos , Receptores de Orexina/agonistas , Orexinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
J Med Chem ; 64(16): 11990-12002, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34347478

RESUMO

Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.


Assuntos
Encéfalo/diagnóstico por imagem , Diacilglicerol Quinase/metabolismo , Indóis/química , Compostos Radiofarmacêuticos/química , Animais , Encéfalo/enzimologia , Radioisótopos de Carbono/química , Desenho de Fármacos , Humanos , Indóis/síntese química , Indóis/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley
5.
Org Lett ; 8(10): 2155-8, 2006 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-16671805

RESUMO

[reaction: see text] The skeletal reorganization of enynes is achieved by the presence of InCl(3) as the catalyst. The reaction of enynes having a terminal acetylenic moiety proceeds in a stereospecific manner to give 1-vinylcycloalkenes. The reaction of enynes containing an alkyl group on the acetylenic terminal carbon resulted in a new type of skeletal reorganization to give 1-allylcycloalkenes, formation of which involves a double cleavage of the C-C double bond and the triple bond.

6.
J Med Chem ; 57(12): 5226-37, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24884590

RESUMO

G-protein-coupled receptor 52 (GPR52) is an orphan Gs-coupled G-protein-coupled receptor. GPR52 inhibits dopamine D2 receptor signaling and activates dopamine D1/N-methyl-d-aspartate receptors via intracellular cAMP accumulation, and therefore, GPR52 agonists may have potential as a novel class of antipsychotics. A series of GPR52 agonists with a bicyclic core was designed to fix the conformation of the phenethyl ether moiety of compounds 2a and 2b. 3-[2-(3-Chloro-5-fluorobenzyl)-1-benzothiophen-7-yl]-N-(2-methoxyethyl)benzamide 7m showed potent activity (pEC50 = 7.53 ± 0.08) and good pharmacokinetic properties. Compound 7m significantly suppressed methamphetamine-induced hyperactivity in mice after oral administration of 3 mg/kg without disturbance of motor function.


Assuntos
Antipsicóticos/síntese química , Benzamidas/síntese química , Receptores Acoplados a Proteínas G/agonistas , Tiofenos/síntese química , Administração Oral , Animais , Antipsicóticos/farmacocinética , Antipsicóticos/farmacologia , Benzamidas/farmacocinética , Benzamidas/farmacologia , Encéfalo/metabolismo , Células CHO , Cricetulus , Humanos , Masculino , Metanfetamina/farmacologia , Camundongos Endogâmicos ICR , Modelos Moleculares , Atividade Motora/efeitos dos fármacos , Relação Estrutura-Atividade , Tiofenos/farmacocinética , Tiofenos/farmacologia
7.
J Org Chem ; 69(24): 8541-3, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15549840

RESUMO

The skeletal reorganization of enynes catalyzed by transition metal chlorides, such as PtCl(2), [RuCl(2)(CO)(3)](2), [RhCl(CO)(2)](2), and AuCl(3), in ionic liquids proceeds under milder conditions (at lower reaction temperatures and for shorter reaction times) than those needed for ordinary solvents. The products produced by the skeletal reorganization of enynes were easily removed from the catalyst by a simple extraction with Et(2)O or distillation. The PtCl(2) can be reused up to five times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA