Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Cancer ; 150(1): 152-163, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449874

RESUMO

Plasmacytoid dendritic cells (pDCs) promote viral elimination by producing large amounts of Type I interferon. Recent studies have shown that pDCs regulate the pathogenesis of diverse inflammatory diseases, such as cancer. Fatty acid-binding protein 5 (FABP5) is a cellular chaperone of long-chain fatty acids that induce biological responses. Although the effects of FABP-mediated lipid metabolism are well studied in various immune cells, its role in pDCs remains unclear. This study, which compares wild-type and Fabp5-/- mice, provides the first evidence that FABP5-mediated lipid metabolism regulates the commitment of pDCs to inflammatory vs tolerogenic gene expression patterns in the tumor microenvironment and in response to toll-like receptor stimulation. Additionally, we demonstrated that FABP5 deficiency in pDCs affects the surrounding cellular environment, and that FABP5 expression in pDCs supports the appropriate generation of regulatory T cells (Tregs). Collectively, our findings reveal that pDC FABP5 acts as an important regulator of tumor immunity by controlling lipid metabolism.


Assuntos
Células Dendríticas/imunologia , Proteínas de Ligação a Ácido Graxo/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Interferon Tipo I/metabolismo , Metabolismo dos Lipídeos , Proteínas de Neoplasias/fisiologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral , Animais , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Toll-Like/metabolismo
2.
Allergy ; 76(6): 1776-1788, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33090507

RESUMO

BACKGROUND: Fatty acid-binding protein 3 (FABP3) is a cytosolic carrier protein of polyunsaturated fatty acids (PUFAs) and regulates cellular metabolism. However, the physiological functions of FABP3 in immune cells and how FABP3 regulates inflammatory responses remain unclear. METHODS: Contact hypersensitivity (CHS) induced by 2,4-dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin wild-type and Fabp3-/- mice. Skin inflammation was assessed using FACS, histological, and qPCR analyses. The development of γ/δ T cells was evaluated by a co-culture system with OP9/Dll1 cells in the presence or absence of transgene of FABP3. RESULTS: Fabp3-deficient mice exhibit a more severe phenotype of contact hypersensitivity (CHS) accompanied by infiltration of IL-17-producing Vγ4+ γ/δ T cells that critically control skin inflammation. In Fabp3-/- mice, we found a larger proportion of Vγ4+ γ/δ T cells in the skin, even though the percentage of total γ/δ T cells did not change at steady state. Similarly, juvenile Fabp3-/- mice also contained a higher amount of Vγ4+ γ/δ T cells not only in the skin but in the thymus when compared with wild-type mice. Furthermore, thymic double-negative (DN) cells expressed FABP3, and FABP3 negatively regulates the development of Vγ4+ γ/δ T cells in the thymus. CONCLUSIONS: These findings suggest that FABP3 functions as a negative regulator of skin inflammation through limiting pathogenic Vγ4+ γ/δ T-cell generation in the thymus.


Assuntos
Dermatite de Contato , Linfócitos T , Animais , Dermatite de Contato/genética , Modelos Animais de Doenças , Proteína 3 Ligante de Ácido Graxo , Proteínas de Ligação a Ácido Graxo/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo
3.
Pharm Res ; 38(3): 479-490, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33646504

RESUMO

PURPOSE: Fatty acid-binding protein 7 (FABP7) involved in intracellular lipid dynamics, is highly expressed in melanomas and associated with decreased patient survival. Several studies put FABP7 at the center of melanoma cell proliferation. However, the underlying mechanisms are not well deciphered. This study examines the effects of FABP7 on Wnt/ß-catenin signaling that enhances proliferation in melanoma cells. METHODS: Skmel23 cells with FABP7 silencing and Mel2 cells overexpressed with wild-type FABP7 (FABP7wt) and mutated FABP7 (FABP7mut) were used. Cell proliferation and migration were analyzed by proliferation and wound-healing assay, respectively. Transcriptional activation of the Wnt/ß-catenin signaling was measured by luciferase reporter assay. The effects of a specific FABP7 inhibitor, MF6, on proliferation, migration, and modulation of the Wnt/ß-catenin signaling were examined. RESULTS: FABP7 siRNA knockdown in Skmel23 decreased proliferation and migration, cyclin D1 expression, as well as Wnt/ß-catenin activity. Similarly, FABP7wt overexpression in Mel2 cells increased these effects, but FABP7mut abrogated these effects. Pharmacological inhibition of FABP7 function with MF6 suppressed FABP7-regulated proliferation of melanoma cells. CONCLUSION: These results suggest the importance of the interaction between FABP7 and its ligands in melanoma proliferation modulation, and the beneficial implications of therapeutic targeting of FABP7 for melanoma treatment.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Melanoma/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína 7 de Ligação a Ácidos Graxos/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligantes , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt , beta Catenina/genética
4.
Biochem Biophys Res Commun ; 530(1): 329-335, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828307

RESUMO

The onset establishment and maintenance of gonadotropin-releasing hormone (GnRH) secretion is an important phenomenon regulating pubertal development and reproduction. GnRH neurons as well as other neurons in the hypothalamus have high-energy demands and require a constant energy supply from their mitochondria machinery to maintain active functioning. However, the involvement of mitochondrial function in GnRH neurons is still unclear. In this study, we examined the role of NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4), a member of the mitochondrial complex 1, on GnRH neurons using Ndufs4-KO mice and Ndufs4-KO GT1-7 cells. Ndufs4 was highly expressed in GnRH neurons in the medial preoptic area (MPOA) and NPY/AgRP and POMC neurons in the arcuate (ARC) nucleus in WT mice. Conversely, there was a significant decrease in GnRH expression in MPOA and median eminence of Ndufs4-KO mice, followed by impaired peripheral endocrine system. In Ndufs4-KO GT1-7 cells, Gnrh1 expression was significantly decreased with or without stimulation with either kisspeptin or NGF, whereas, stimulation significantly increased Gnrh1 expression in control cells. In contrast, there was no difference in cell signaling activity including ERK and CREB as well as the expression of GPR54, TrkA and p75NTR, suggesting that Ndufs4 is involved in the transcriptional regulation system for GnRH production. These findings may be useful in understanding the mitochondrial function in GnRH neuron.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Animais , Linhagem Celular , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Mitocôndrias/genética , Neurônios/citologia , Precursores de Proteínas/genética
5.
J Neurosci ; 38(49): 10411-10423, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341178

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. Fatty acid-binding proteins (FABPs), cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. In this study, we show that FABP3 is strongly expressed in the GABAergic inhibitory interneurons of the male mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO male mice show an increase in the expression of the gene encoding the GABA-synthesizing enzyme glutamic acid decarboxylase 67 (Gad67) in the ACC. In the ACC of Fabp3 KO mice, Gad67 promoter methylation and the binding of methyl-CpG binding protein 2 (MeCP2) and histone deacetylase 1 (HDAC1) to the Gad67 promoter are significantly decreased compared with those in WT mice. The abnormal cognitive and emotional behaviors of Fabp3 KO mice are restored by methionine administration. Notably, methionine administration normalizes Gad67 promoter methylation and its mRNA expression in the ACC of Fabp3 KO mice. These findings demonstrate that FABP3 is involved in the control of DNA methylation of the Gad67 promoter and activation of GABAergic neurons in the ACC, thus suggesting the importance of PUFA homeostasis in the ACC for cognitive and emotional behaviors.SIGNIFICANCE STATEMENT The ACC is important for emotional and cognitive processing. However, the mechanisms underlying its involvement in the control of behavioral responses are largely unknown. We show the following new observations: (1) FABP3, a PUFA cellular chaperone, is exclusively expressed in GABAergic interneurons in the ACC; (2) an increase in Gad67 expression is detected in the ACC of Fabp3 KO mice; (3) the Gad67 promoter is hypomethylated and the binding of transcriptional repressor complexes is decreased in the ACC of Fabp3 KO mice; and (4) elevated Gad67 expression and abnormal behaviors seen in Fabp3 KO mice are mostly recovered by methionine treatment. These suggest that FABP3 regulates GABA synthesis through transcriptional regulation of Gad67 in the ACC.


Assuntos
Metilação de DNA/fisiologia , Proteína 3 Ligante de Ácido Graxo/biossíntese , Glutamato Descarboxilase/metabolismo , Giro do Cíngulo/metabolismo , Regiões Promotoras Genéticas/fisiologia , Animais , Linhagem Celular Tumoral , Proteína 3 Ligante de Ácido Graxo/genética , Glutamato Descarboxilase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos
6.
Glia ; 64(1): 48-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26296243

RESUMO

Fatty acid binding protein 7 (FABP7) expressed by astrocytes in developing and mature brains is involved in uptake and transportation of fatty acids, signal transduction, and gene transcription. Fabp7 knockout (Fabp7 KO) mice show behavioral phenotypes reminiscent of human neuropsychiatric disorders such as schizophrenia. However, direct evidence showing how FABP7 deficiency in astrocytes leads to altered brain function is lacking. Here, we examined neuronal dendritic morphology and synaptic plasticity in medial prefrontal cortex (mPFC) of Fabp7 KO mice and in primary cortical neuronal cultures. Golgi staining of cortical pyramidal neurons in Fabp7 KO mice revealed aberrant dendritic morphology and decreased spine density compared with those in wild-type (WT) mice. Aberrant dendritic morphology was also observed in primary cortical neurons co-cultured with FABP7-deficient astrocytes and neurons cultured in Fabp7 KO astrocyte-conditioned medium. Excitatory synapse number was decreased in mPFC of Fabp7 KO mice and in neurons co-cultured with Fabp7 KO astrocytes. Accordingly, whole-cell voltage-clamp recording in brain slices from pyramidal cells in the mPFC showed that both amplitude and frequency of action potential-independent miniature excitatory postsynaptic currents (mEPSCs) were decreased in Fabp7 KO mice. Moreover, transplantation of WT astrocytes into the mPFC of Fabp7 KO mice partially attenuated behavioral impairments. Collectively, these results suggest that astrocytic FABP7 is important for dendritic arbor growth, neuronal excitatory synapse formation, and synaptic transmission, and provide new insights linking FABP7, lipid homeostasis, and neuropsychiatric disorders, leading to novel therapeutic interventions.


Assuntos
Astrócitos/fisiologia , Dendritos/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Astrócitos/transplante , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/cirurgia , Células Piramidais/citologia
7.
Glia ; 63(5): 780-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25601031

RESUMO

Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794.


Assuntos
Astrócitos/citologia , Cavéolas/metabolismo , Caveolina 1/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cavéolas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Colesterol/metabolismo , Citocinas/metabolismo , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução Genética
8.
Am J Pathol ; 184(9): 2505-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25041855

RESUMO

Kupffer cells (KCs) are involved in the progression of liver diseases such as hepatitis and liver cancer. Several members of the fatty acid binding proteins (FABPs) are expressed by tissue macrophages, and FABP7 is localized only in KCs. To clarify the role of FABP7 in the regulation of KC function, we evaluated pathological changes of Fabp7 knockout mice during carbon tetrachloride-induced liver injury. During liver injury in Fabp7 knockout mice, serum liver enzymes were increased, cytokine expression (tumor necrosis factor-α, monocyte chemoattractant protein-1, and transforming growth factor-ß) was decreased in the liver, and the number of KCs in the liver necrotic area was significantly decreased. Interestingly, in the FABP7-deficient KCs, phagocytosis of apoptotic cells was impaired, and expression of the scavenger receptor CD36 was markedly decreased. In chronic liver injury, Fabp7 knockout mice showed less fibrogenic response to carbon tetrachloride compared with wild-type mice. Taken together, FABP7 is involved in the liver injury process through its regulation of KC phagocytic activity and cytokine production. Such modulation of KC function by FABP7 may provide a novel therapeutic approach to the treatment of liver diseases.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/biossíntese , Proteínas de Ligação a Ácido Graxo/metabolismo , Células de Kupffer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fagocitose/fisiologia , Animais , Western Blotting , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ensaio de Imunoadsorção Enzimática , Proteína 7 de Ligação a Ácidos Graxos , Citometria de Fluxo , Imunofluorescência , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
J Nutr ; 144(10): 1509-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25122651

RESUMO

BACKGROUND: Low placental fatty acid (FA) transport during the embryonic period has been suggested to result in fetal developmental disorders and various adult metabolic diseases, but the molecular mechanism by which FAs are transported through the placental unit remains largely unknown. OBJECTIVE: The aim of this study was to examine the distribution and functional relevance of FA binding protein (FABP), a cellular chaperone of FAs, in the mouse placenta. METHODS: We clarified the localization of FABPs and sought to examine their function in placental FA transport through the phenotypic analysis of Fabp3-knockout mice. RESULTS: Four FABPs (FABP3, FABP4, FABP5, and FABP7) were expressed with spatial heterogeneity in the placenta, and FABP3 was dominantly localized to the trophoblast cells. In placentas from the Fabp3-knockout mice (both sexes), the transport coefficients for linoleic acid (LA) were significantly reduced compared with those from wild-type mice by 25% and 44% at embryonic day (E) 15.5 and E18.5, respectively, whereas those for α-linolenic acid (ALA) were reduced by 19% and 17%, respectively. The accumulation of LA (18% and 27% at E15.5 and E18.5) and ALA (16% at E15.5) was also significantly less in the Fabp3-knockout fetuses than in wild-type fetuses. In contrast, transport and accumulation of palmitic acid (PA) were unaffected and glucose uptake significantly increased by 23% in the gene-ablated mice compared with wild-type mice at E18.5. Incorporation of LA (51% and 52% at 1 and 60 min, respectively) and ALA (23% at 60 min), but not PA, was significantly less in FABP3-knockdown BeWo cells than in controls, whereas glucose uptake was significantly upregulated by 51%, 50%, 31%, and 33% at 1, 20, 40, and 60 min, respectively. CONCLUSIONS: Collectively FABP3 regulates n-3 (ω-3) and n-6 (ω-6) polyunsaturated FA transport in trophoblasts and plays a pivotal role in fetal development.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Animais , Transporte Biológico , Proteína 3 Ligante de Ácido Graxo , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Trofoblastos/efeitos dos fármacos , Regulação para Cima
10.
Cell Tissue Res ; 354(3): 683-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24114376

RESUMO

Fatty-acid-binding proteins (FABPs) are key intracellular molecules involved in the uptake, transportation and storage of fatty acids and in the mediation of signal transduction and gene transcription. However, little is known regarding their expression and function in the oligodendrocyte lineage. We evaluate the in vivo and in vitro expression of FABP5 and FABP7 in oligodendrocyte lineage cells in the cortex and corpus callosum of adult mice, mixed cortical culture and oligosphere culture by immunofluorescent counter-staining with major oligodendrocyte lineage markers. In all settings, FABP7 expression was detected in NG2(+)/PDGFRα(+) oligodendrocyte progenitor cells (OPCs) that did not express FABP5. FABP5 was detected in mature CC1(+)/MBP(+) oligodendrocytes that did not express FABP7. Analysis of cultured OPCs showed a significant decrease in the population of FABP7-knockout (KO) OPCs and their BrdU uptake compared with wild-type (WT) OPCs. Upon incubation of OPCs in oligodendrocyte differentiation medium, a significantly lower percentage of FABP7-KO OPCs differentiated into O4(+) oligodendrocytes. The percentage of mature MBP(+) oligodendrocytes relative to whole O4(+)/MBP(+) oligodendrocytes was significantly lower in FABP7-KO and FABP5-KO than in WT cell populations. The percentage of terminally mature oligodendrocytes with membrane sheet morphology was significantly lower in FABP5-KO compared with WT cell populations. Thus, FABP7 and FABP5 are differentially expressed in oligodendrocyte lineage cells and regulate their proliferation and/or differentiation. Our findings suggest the involvement of FABP7 and FABP5 in the pathophysiology of demyelinating disorders, neuropsychiatric disorder and glioma, conditions in which OPCs/oligodendrocytes play central roles.


Assuntos
Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Oligodendroglia/metabolismo , Animais , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Oligodendroglia/citologia , Gravidez , Transdução de Sinais
11.
Cell Mol Neurobiol ; 33(2): 167-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23208699

RESUMO

Hyperalgesia results from a decreased pain threshold, often subsequent to peripheral tissue damage. Recent reports revealed several promising mechanisms of hyperalgesia, but many issues remain unclear. The glial activation accompanying inflammation of neurotransmission in the spinal cord might be related to the initiation and maintenance of hyperalgesia. The present study investigated the pharmacological pain-modifying effects of mitogen-associated protein kinase (MAPK)-related inhibitors identified with glia cells over time during inflammatory pain. A model of inflammatory pain was produced by injecting mustard oil (MO) into the hind paws of rats. Following MO injection, the changes in paws flinching as the early onset of pain and paw withdrawal latency (PWL) in response to thermal stimulation were measured as delayed-onset hyperalgesia. Before and after the MO injection, one of the inhibitors, a p38-MAPK (SB), nuclear factor (NF)-κB (PDTC), BDNF-trk-B (K252a), or JNK-1 (SP), was administered and flinching and PWL were measured. In the SB, PDTC, and k252a groups, early flinching following MO injection was moderately suppressed. Hyperalgesia was significantly suppressed in the left-right difference of PWL in animals receiving SB, k252a, or PDTC pre-treatment. In animals receiving post-treatment, the suppressive effects were most potent in the SP group. The present results revealed that microglial activation resulting from the release of the phosphatase p38-MAPK, the transcription factor NF-κB, and BDNF contributes to the early stage of inflammatory pain. Astrocyte activation accompanying JNK activation contributes to subsequent hyperalgesia. Activation of different signals identified with glia cells is thought to contribute to the progression of hyperalgesia, which represents an applicable finding for the treatment of hyperalgesia.


Assuntos
Progressão da Doença , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Transdução de Sinais , Animais , Astrócitos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Injeções , Masculino , Mostardeira , Estimulação Física , Óleos de Plantas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Medula Espinal/patologia , Coloração e Rotulagem
12.
J Biochem ; 174(6): 511-518, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37656908

RESUMO

Tumor metastasis is one of the worst prognostic features of cancer. Although metastasis is a major cause of cancer-related deaths, an effective treatment has not yet been established. Here, we explore the antitumor effects of GO-Y030, a curcumin analog, via various mechanisms using a mouse model. GO-Y030 treatment of B16-F10 melanoma cells inhibited TGF-ß expression and glycolysis. The invasion assay results showed almost complete invasion inhibition following GO-Y030 treatment. Mouse experiments demonstrated that GO-Y030 administration inhibited lung tumor metastasis without affecting vascular endothelial cells. Consistent with this result, GO-Y030 treatment led to the downregulation of MMP2 and VEGFα, inhibiting tumor invasion and metastasis. The silencing of eIF4B, a downstream molecule of S6, attenuated MMP2 expression. Our study demonstrates the novel efficacy of GO-Y030 in inhibiting tumor metastasis by regulating metastasis-associated gene expression via inhibiting dual access, glycolytic and TGF-ß pathways.


Assuntos
Curcumina , Neoplasias , Humanos , Curcumina/farmacologia , Metaloproteinase 2 da Matriz , Células Endoteliais , Fator de Crescimento Transformador beta , Linhagem Celular Tumoral , Metástase Neoplásica
13.
Front Immunol ; 14: 1049713, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814928

RESUMO

Pyrolyzed deketene curcumin GO-Y022 prevents carcinogenesis in a gastric cancer mouse model. However, it is still less clear if GO-Y022 affects tumor-induced immune suppression. In this study, we found that GO-Y022 inhibited Treg generation in the presence of transforming growth factor beta 1 (TGF-ß). However, GO-Y022 showed less impact on Foxp3+ Tregs in the gastric tumor microenvironment. Gastric tumor cells produce a large amount of L-lactate in the presence of GO-Y022 and diminish the inhibitory role of GO-Y022 against Treg generation in response to TGF-ß. Therefore, naïve CD4+ T cells co-cultured with GO-Y022 treated gastric tumor cells increased Treg generation. GO-Y022-induced tumor cell death was further enhanced by 2-deoxy-d-glucose (2DG), a glycolysis inhibitor. Combination treatment of GO-Y022 and 2DG results in reduced L-lactate production and Treg generation in gastric tumor cells. Overall, GO-Y022-treatment with restricted glucose metabolism inhibits gastric tumor cell survival and promotes anti-tumor immunity.


Assuntos
Curcumina , Neoplasias Gástricas , Animais , Camundongos , Linfócitos T Reguladores , Glucose/metabolismo , Desoxiglucose/metabolismo , Microambiente Tumoral
14.
FEBS J ; 290(7): 1798-1821, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36325660

RESUMO

Fatty acid-binding protein 7 (FABP7), one of the fatty acid (FA) chaperones involved in the modulation of intracellular FA metabolism, is highly expressed in glioblastoma, and its expression is associated with decreased patients' prognosis. Previously, we demonstrated that FABP7 requires its binding partner to exert its function and that a mutation in the FA-binding site of FABP7 affects tumour biology. Here, we explored the role of FA ligand binding for FABP7 function in tumour proliferation and examined the mechanism of FABP7 and ligand interaction in tumour biology. We discovered that among several FA treatment, oleic acid (OA) boosted cell proliferation of FABP7-expressing cells. In turn, OA increased FABP7 nuclear localization, and the accumulation of FABP7-OA complex in the nucleus induced the formation of nuclear lipid droplet (nLD), as well as an increase in colocalization of nLD with promyelocytic leukaemia (PML) nuclear bodies. Furthermore, OA increased mRNA levels of proliferation-related genes in FABP7-expressing cells through histone acetylation. Interestingly, these OA-boosted functions were abrogated in FABP7-knockout cells and mutant FABP7-overexpressing cells. Thus, our findings suggest that FABP7-OA intracellular interaction may modulate nLD formation and the epigenetic status thereby enhancing transcription of proliferation-regulating genes, ultimately driving tumour cell proliferation.


Assuntos
Glioma , Ácido Oleico , Humanos , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Gotículas Lipídicas/metabolismo , Ligantes , Glioma/patologia , Proliferação de Células , Proteínas Supressoras de Tumor/genética
15.
Mol Oncol ; 16(1): 289-306, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716958

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is a key enzyme in cellular metabolism. IDH1 mutation (IDH1mut) is the most important genetic alteration in lower grade glioma, whereas glioblastoma (GB), the most common malignant brain tumor, often has wild-type IDH1 (IDH1wt). Although there is no effective treatment yet for neither IDH1wt nor IDHmut GB, it is important to note that the survival span of IDH1wt GB patients is significantly shorter than those with IDH1mut GB. Thus, understanding IDH1wt GB biology and developing effective molecular-targeted therapies is of paramount importance. Fatty acid-binding protein 7 (FABP7) is highly expressed in GB, and its expression level is negatively correlated with survival in malignant glioma patients; however, the underlying mechanisms of FABP7 involvement in tumor proliferation are still unknown. In this study, we demonstrate that FABP7 is highly expressed and localized in nuclei in IDH1wt glioma. Wild-type FABP7 (FABP7wt) overexpression in IDH1wt U87 cells increased cell proliferation rate, caveolin-1 expression, and caveolae/caveosome formation. In addition, FABP7wt overexpression increased the levels of H3K27ac on the caveolin-1 promoter through controlling the nuclear acetyl-CoA level via the interaction with ACLY. Consistent results were obtained using a xenograft model transplanted with U87 cells overexpressing FABP7. Interestingly, in U87 cells with mutant FABP7 overexpression, both in vitro and in vivo phenotypes shown by FABP7wt overexpression were disrupted. Furthermore, IDH1wt patient GB showed upregulated caveolin-1 expression, increased levels of histone acetylation, and increased levels of acetyl-CoA compared with IDH1mut patient GB. Taken together, these data suggest that nuclear FABP7 is involved in cell proliferation of GB through caveolae function/formation regulated via epigenetic regulation of caveolin-1, and this mechanism is critically important for IDH1wt tumor biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Neoplasias Encefálicas/patologia , Cavéolas/metabolismo , Cavéolas/patologia , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Glioblastoma/genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Mutação/genética , Proteínas Supressoras de Tumor/metabolismo
16.
FEBS J ; 288(4): 1130-1141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32578350

RESUMO

Plasma cells (PCs), which aim to protect host health, produce various subsets of immunoglobulin (Ig) in response to extracellular pathogens. Blimp-1 (encoded by Prdm1)-a protein that is highly expressed by PCs-is important for PC functions, including the generation of Igs. Fatty acid-binding protein 3 (FABP3) is a carrier protein of polyunsaturated fatty acids (PUFAs) and participates in multiple cellular functions. Although the functions of FABP3 in neurons and cardiac myocytes are well-noted, their roles in immune cells remain to be fully elucidated. In this study, we demonstrate that FABP3 is expressed in activated B cells and that FABP3 promotes PC development and IgM secretion. Moreover, we provide the first evidence that FABP3 is necessary for Blimp-1 expression, by regulating the histone modification of its promoter region. Taken together, our findings reveal that FABP3 acts as a positive regulator of B-cell activation by controlling histone acetylation of the Blimp-1 gene, thereby playing a role in host defense against pathogens.


Assuntos
Diferenciação Celular/genética , Proteína 3 Ligante de Ácido Graxo/genética , Imunoglobulina M/metabolismo , Plasmócitos/metabolismo , Acetilação , Animais , Células Cultivadas , Proteína 3 Ligante de Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
FEBS Lett ; 595(13): 1797-1805, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33982279

RESUMO

Fatty acid-binding protein (FABP) 5 is highly expressed in various types of tumors and is strongly correlated with tumor growth, development, and metastasis. However, it is unclear how the expression of FABP5 in the host affects tumor progression. In this study, using a lung tumor metastasis model in mice, we found that FABP5-deficient mice were more susceptible to tumor metastasis, which is accompanied by infiltration of a lower frequency of activated natural killer (NK) cells in the lung. Additionally, FABP5 deficiency leads to impaired maturation of NK cells in the lungs, but not in the bone marrow and spleen. Taken together, our results provide the first evidence that FABP5 in the host regulates lung tumor metastasis through controlling NK cell maturation.


Assuntos
Proteínas de Ligação a Ácido Graxo/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/genética , Proteínas de Neoplasias/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Matadoras Naturais/metabolismo , Metabolismo dos Lipídeos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Melanoma/imunologia , Melanoma/patologia , Camundongos , Transplante de Neoplasias , Fatores de Transcrição/genética
18.
Sci Rep ; 11(1): 10969, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040028

RESUMO

Altered function of mitochondrial respiratory chain in brain cells is related to many neurodegenerative diseases. NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4) is one of the subunits of mitochondrial complex I and its mutation in human is associated with Leigh syndrome. However, the molecular biological role of Ndufs4 in neuronal function is poorly understood. In this study, upon Ndufs4 expression confirmation in NeuN-positive neurons, and GFAP-positive astrocytes in WT mouse hippocampus, we found significant decrease of mitochondrial respiration in Ndufs4-KO mouse hippocampus. Although there was no change in the number of NeuN positive neurons in Ndufs4-KO hippocampus, the expression of synaptophysin, a presynaptic protein, was significantly decreased. To investigate the detailed mechanism, we silenced Ndufs4 in Neuro-2a cells and we observed shorter neurite lengths with decreased expression of synaptophysin. Furthermore, western blot analysis for phosphorylated extracellular regulated kinase (pERK) revealed that Ndufs4 silencing decreases the activity of ERK signalling. These results suggest that Ndufs4-modulated mitochondrial activity may be involved in neuroplasticity via regulating synaptophysin expression.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Sinaptofisina/biossíntese , Trifosfato de Adenosina/biossíntese , Animais , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuritos/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Especificidade de Órgãos , Sinaptofisina/genética
19.
Sci Rep ; 10(1): 16617, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024217

RESUMO

Dietary obesity is regarded as a problem worldwide, and it has been revealed the strong linkage between obesity and allergic inflammation. Fatty acid-binding protein 5 (FABP5) is expressed in lung cells, such as alveolar epithelial cells (ECs) and alveolar macrophages, and plays an important role in infectious lung inflammation. However, we do not know precise mechanisms on how lipid metabolic change in the lung affects allergic lung inflammation. In this study, we showed that Fabp5-/- mice exhibited a severe symptom of allergic lung inflammation. We sought to examine the role of FABP5 in the allergic lung inflammation and demonstrated that the expression of FABP5 acts as a novel positive regulator of ST2 expression in alveolar ECs to generate retinoic acid (RA) and supports the synthesis of RA from type II alveolar ECs to suppress excessive activation of innate lymphoid cell (ILC) 2 during allergic lung inflammation. Furthermore, high-fat diet (HFD)-fed mice exhibit the downregulation of FABP5 and ST2 expression in the lung tissue compared with normal diet (ND)-fed mice. These phenomena might be the reason why obese people are more susceptible to allergic lung inflammation. Thus, FABP5 is potentially a therapeutic target for treating ILC2-mediated allergic lung inflammation.


Assuntos
Asma/genética , Asma/imunologia , Proteínas de Ligação a Ácido Graxo/imunologia , Inflamação/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Proteínas de Neoplasias/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Expressão Gênica , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Metabolismo dos Lipídeos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Obesidade/etiologia , Obesidade/imunologia , Tretinoína/metabolismo
20.
Mol Neurobiol ; 57(12): 4891-4910, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812201

RESUMO

Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Astrócitos/metabolismo , Núcleo Celular/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Acetilação , Animais , Sequência de Bases , Caveolina 1/genética , Caveolina 1/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA