Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genes Dev ; 32(7-8): 555-567, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654059

RESUMO

Although peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α) is a well-established transcriptional coactivator for the metabolic adaptation of mammalian cells to diverse physiological stresses, the molecular mechanism by which it functions is incompletely understood. Here we used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α. We show that the CBM, which consists of a nine-amino-acid α helix, is critical for the association of PGC-1α with CBP80 at the 5' cap of target transcripts. Results from RNA sequencing demonstrate that the PGC-1α CBM promotes RNA synthesis from promyogenic genes. Our findings reveal a new conduit between DNA-associated and RNA-associated proteins that functions in a cap-binding protein surveillance mechanism, without which efficient differentiation of myoblasts to myotubes fails to occur.


Assuntos
Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ativação Transcricional , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Diferenciação Celular , Humanos , Células MCF-7 , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Capuzes de RNA/metabolismo , Proteínas de Ligação a RNA , Transcrição Gênica
2.
Genes Dev ; 31(14): 1483-1493, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28827400

RESUMO

While microRNAs (miRNAs) regulate the vast majority of protein-encoding transcripts, little is known about how miRNAs themselves are degraded. We recently described Tudor-staphylococcal/micrococcal-like nuclease (TSN)-mediated miRNA decay (TumiD) as a cellular pathway in which the nuclease TSN promotes the decay of miRNAs that contain CA and/or UA dinucleotides. While TSN-mediated degradation of either protein-free or AGO2-loaded miRNAs does not require the ATP-dependent RNA helicase UPF1 in vitro, we report here that cellular TumiD requires UPF1. Results from experiments using AGO2-loaded miRNAs in duplex with target mRNAs indicate that UPF1 can dissociate miRNAs from their mRNA targets, making the miRNAs susceptible to TumiD. miR-seq (deep sequencing of miRNAs) data reveal that the degradation of ∼50% of candidate TumiD targets in T24 human urinary bladder cancer cells is augmented by UPF1. We illustrate the physiological relevance by demonstrating that UPF1-augmented TumiD promotes the invasion of T24 cells in part by degrading anti-invasive miRNAs so as to up-regulate the expression of proinvasive proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , MicroRNAs/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA , Transativadores/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/química , Análise de Sequência de RNA , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
3.
J Hum Genet ; 69(2): 69-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012394

RESUMO

SLC5A6 encodes the sodium-dependent multivitamin transporter, a transmembrane protein that uptakes biotin, pantothenic acid, and lipoic acid. Biallelic SLC5A6 variants cause sodium-dependent multivitamin transporter deficiency (SMVTD) and childhood-onset biotin-responsive peripheral motor neuropathy (COMNB), which both respond well to replacement therapy with the above three nutrients. SMVTD usually presents with various symptoms in multiple organs, such as gastrointestinal hemorrhage, brain atrophy, and global developmental delay, at birth or in infancy. Without nutrient replacement therapy, SMVTD can be lethal in early childhood. COMNB is clinically milder and has a later onset than SMVTD, at approximately 10 years of age. COMNB symptoms are mostly limited to peripheral motor neuropathy. Here we report three patients from one Japanese family harboring novel compound heterozygous missense variants in SLC5A6, namely NM_021095.4:c.[221C>T];[642G>C] p.[(Ser74Phe)];[(Gln214His)]. Both variants were predicted to be deleterious through multiple lines of evidence, including amino acid conservation, in silico predictions of pathogenicity, and protein structure considerations. Drosophila analysis also showed c.221C>T to be pathogenic. All three patients had congenital brain cysts on neonatal cranial imaging, but no other morphological abnormalities. They also had a mild motor developmental delay that almost completely resolved despite no treatment. In terms of severity, their phenotypes were intermediate between SMVTD and COMNB. From these findings we propose a new SLC5A6-related disorder, spontaneously remitting developmental delay with brain cysts (SRDDBC) whose phenotypic severity is between that of SMVTD and COMNB. Further clinical and genetic evidence is needed to support our suggestion.


Assuntos
Cistos , Simportadores , Pré-Escolar , Humanos , Recém-Nascido , Biotina/genética , Biotina/metabolismo , Fenótipo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo
4.
EMBO Rep ; 23(10): e53813, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35993198

RESUMO

Loss-of-function mutations in Drosophila lethal(3)malignant brain tumor [l(3)mbt] cause ectopic expression of germline genes and brain tumors. Loss of L(3)mbt function in ovarian somatic cells (OSCs) aberrantly activates germ-specific piRNA amplification and leads to infertility. However, the underlying mechanism remains unclear. Here, ChIP-seq for L(3)mbt in cultured OSCs and RNA-seq before and after L(3)mbt depletion shows that L(3)mbt genomic binding is not necessarily linked to gene regulation and that L(3)mbt controls piRNA pathway genes in multiple ways. Lack of known L(3)mbt co-repressors, such as Lint-1, has little effect on the levels of piRNA amplifiers. Identification of L(3)mbt interactors in OSCs and subsequent analysis reveals CG2662 as a novel co-regulator of L(3)mbt, termed "L(3)mbt interactor in OSCs" (Lint-O). Most of the L(3)mbt-bound piRNA amplifier genes are also bound by Lint-O in a similar fashion. Loss of Lint-O impacts the levels of piRNA amplifiers, similar to the lack of L(3)mbt. The lint-O-deficient flies exhibit female sterility and tumorous brains. Thus, L(3)mbt and its novel co-suppressor Lint-O cooperate in suppressing target genes to maintain homeostasis in the ovary and brain.


Assuntos
Neoplasias Encefálicas , Proteínas de Drosophila , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas Correpressoras/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Homeostase , Ovário/metabolismo , RNA Interferente Pequeno/genética
5.
J Oral Rehabil ; 50(2): 122-130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427256

RESUMO

BACKGROUND: The wear depth on the occlusal splint (OS) is reportedly associated with the sleep bruxism (SB) level, as evaluated using portable polysomnography (PSG) recordings. However, the OS is deformed owing to SB forces, possibly preventing the accurate quantification of the wear facets. OBJECTIVES: We aimed to introduce a newly developed system to quantify the wear facets on the OS using a dental laboratory scanner (D810) and investigate the association between the wear facets, as evaluated with this system, and the SB level. METHODS: Ten healthy individuals who were diagnosed with SB based on portable PSG recordings participated in this study. They were asked to wear the OS for 2 months. The first day after a 2-week adaptation period was defined as the reference day, and sequential scanning of the OS surface was performed on days 15, 30, and 45. Changes in the OS surface from the reference day allowed dimensional evaluation of the wear facets in terms of maximum wear depth, wear area, and wear volume. Multiple regression analyses were conducted to test whether each of these variables could be predicted by any of the SB-related variables. RESULTS: The total duration of SB episodes per hour of sleep and the maximum muscle activity were significantly associated with the wear area, as measured with our system (adjusted R-squared was .78, p < .01). CONCLUSION: Our system allows dimensional analysis of the wear facets on the OS surface in association with the SB level.


Assuntos
Bruxismo do Sono , Humanos , Bruxismo do Sono/diagnóstico por imagem , Contenções , Laboratórios Odontológicos , Placas Oclusais , Sono
6.
Hum Genet ; 141(2): 283-293, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031858

RESUMO

GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.


Assuntos
Carbamazepina/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Mutação com Ganho de Função , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Pré-Escolar , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Mol Cell ; 49(4): 680-91, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23375501

RESUMO

Endogenous small interfering RNAs (endo-siRNAs) in Drosophila are processed by Dicer-2 (Dcr-2) and loaded onto Ago2 by the Dcr-2/R2D2 heterodimer. In r2d2 mutants, the level of endo-siRNAs is unchanged, but endo-siRNAs are misloaded onto Ago1. However, the mechanism underlying the control of endo-siRNA sorting by R2D2 remains unknown. Here, we show that R2D2 controls endo-siRNA sorting by localizing Dcr-2, and presumably endo-siRNA duplexes, to cytoplasmic foci, D2 bodies. Ago2, but not Ago1, localized to D2 bodies. dsRNA-binding-deficient mutant, but not wild-type, R2D2 failed to localize D2 bodies and caused endo-siRNA misdirection to Ago1 in R2D2-depleted cells. However, R2D2 was dispensable for sorting miRNAs and exogenous siRNAs onto Ago1 and Ago2, respectively, in vivo. Endo- and exo-siRNA guide selection also occurred R2D2 independently. The functions of R2D2 are required to avoid endo-siRNA misdirection to Ago1, because Ago1 is capable of loading incompletely complementary miRNA duplexes and endo-siRNA duplexes.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Proteínas Argonautas/metabolismo , Linhagem Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Feminino , Oócitos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , RNA Helicases/química , RNA Helicases/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(5): 968-973, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339519

RESUMO

Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.


Assuntos
Evolução Molecular , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Regiões 3' não Traduzidas , Sequência Rica em At , Animais , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
9.
Clin Oral Implants Res ; 31(1): 74-83, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31608509

RESUMO

OBJECTIVE: This study aimed to evaluate the precision of digital implant impressions in comparison with conventional impressions and assess the impact of the scanning range on precision. MATERIALS AND METHODS: An edentulous maxilla model with six implants was scanned with four intraoral scanners (IOSs) and a dental laboratory scanner five times each, and stereolithography (STL) data were generated. A conventional silicone impression was made, and a model was fabricated, which was scanned using the laboratory scanner. This procedure was also repeated five times. Nine different ranges of interest (ROIs) were defined, and the average discrepancies of the measurement points between each pair of STL images out of five for each ROI were calculated. The effects of "impression method" and "ROI" on precision, as evaluated by the averaged discrepancy, were tested by two-way analysis of variance (p < .05). RESULTS: The effects of "impression methods" and "ROI" and their interactions were statistically significant. The discrepancies in the scanned datasets of the dental laboratory scanner were significantly lower than those in the other impression methods. The discrepancies of the IOSs were comparable with those of the laboratory scanner when the ROI was limited, however; the discrepancies deteriorated when the ROI expanded across the arch, while those of the laboratory scanner remained stable irrespective of the ROI. CONCLUSIONS: Within the limitation of this in vitro study, digital implant impressions by IOSs may show clinically acceptable precision when the scan range is limited, such as in 3-unit superstructure supported by two implants.


Assuntos
Técnica de Moldagem Odontológica , Maxila , Desenho Assistido por Computador , Imageamento Tridimensional , Modelos Dentários
10.
Nature ; 480(7377): 391-5, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056986

RESUMO

RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.


Assuntos
Proteínas Argonautas/metabolismo , Cromatina/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , RNA Helicases/metabolismo , Interferência de RNA , Ribonuclease III/metabolismo , Transcrição Gênica , Animais , Proteínas Argonautas/deficiência , Proteínas Argonautas/genética , Cromatina/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Helicases/deficiência , RNA Helicases/genética , RNA Polimerase II/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/deficiência , Ribonuclease III/genética , Fatores de Transcrição
11.
Genetics ; 227(2)2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38652268

RESUMO

Nanostructures of pores and protrusions in the insect cuticle modify molecular permeability and surface wetting and help insects sense various environmental cues. However, the cellular mechanisms that modify cuticle nanostructures are poorly understood. Here, we elucidate how insect-specific Osiris family genes are expressed in various cuticle-secreting cells in the Drosophila head during the early stages of cuticle secretion and cover nearly the entire surface of the head epidermis. Furthermore, we demonstrate how each sense organ cell with various cuticular nanostructures expressed a unique combination of Osiris genes. Osiris gene mutations cause various cuticle defects in the corneal nipples and pores of the chemosensory sensilla. Thus, our study emphasizes on the importance of Osiris genes for elucidating cuticle nanopatterning in insects.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Sensilas/metabolismo , Família Multigênica , Mutação , Nanoestruturas/química , Drosophila/genética
12.
RNA ; 16(3): 506-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20086050

RESUMO

In Drosophila, three types of endogenous small RNAs-microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)-function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2-Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2-Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.


Assuntos
Drosophila melanogaster/metabolismo , MicroRNAs/biossíntese , RNA Interferente Pequeno/biossíntese , Animais , Vias Biossintéticas , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , MicroRNAs/química , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA Interferente Pequeno/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo
13.
RNA ; 15(7): 1282-91, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19451544

RESUMO

In Drosophila, miRNA is processed by Dicer-1 (DCR-1) from its precursor and loaded onto Argonaute1 (AGO1). AGO1 recognizes target mRNAs based on the miRNA sequence and suppresses the expression at post-transcriptional levels. GW182, a P-body component, localizes the AGO1 complex to processing bodies (P-bodies) where mRNA targets are decayed or stored. However, the details of the pathway remain elusive. In this study, two distinct types of AGO1-containing complexes from Drosophila Schneider2 (S2) cells were isolated and compared at the molecular level. The AGO1 complex with DCR-1 contained neither mature miRNA nor GW182 but exhibited pre-miRNA processing activity. The resultant mature RNA was loaded onto AGO1 within the complex. The AGO1 complex with GW182 excluded DCR-1, but possessed mature miRNA and showed no pre-miRNA processing activity. Thus, the AGO1-DCR-1 and AGO1-GW182 complexes correspond to miRLC (miRISC loading complex) and miRISC, respectively. The requirement for various domains of AGO1 in miRNA-loading and DCR-1/GW182 interaction was also examined. The Mid domain mutant (F2V2) interacted with DCR-1 but not with mature miRNA and GW182. The AGO1-PAZ mutant lacks the mature miRNA-binding ability but associates with either DCR-1 or GW182. The AGO1-PIWI mutant showed no Slicer activity but associates with mature miRNA. These results indicate that these domains are required differently for miRLC and miRISC formation in the miRNA pathway.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Transdução de Sinais , Animais , Proteínas Argonautas , Northern Blotting , Western Blotting , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Fatores de Iniciação em Eucariotos , Imunofluorescência , Imunoprecipitação , MicroRNAs/genética , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Interferente Pequeno/farmacologia , Complexo de Inativação Induzido por RNA/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
14.
Int J Implant Dent ; 7(1): 97, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34312701

RESUMO

BACKGROUND: With the development of intraoral scanners, their trueness and precision have been evaluated in various studies. Through these studies, the amount of accuracy that can be expected from intraoral scanners has gradually been disclosed, at the same time, it was difficult to integrate the results of individual studies due to differences in evaluation methods between studies. The purpose of this article was to review the currently available evidence, summarise what is currently known about IOS, analyse the evaluation methods of each study, and list points to note when interpreting the results. MAIN TEXT: Most of the studies were conducted in vitro. The accuracy is evaluated in situations such as single missing teeth, partially edentulous ridges with multiple missing teeth, and fully edentulous jaws. To evaluate the accuracy, direct measurement of distance or angle by coordinate measuring machines and calculation of surface deviation by superimposing surface data were predominantly performed. The influence of parameters such as the number of implants, distance between implants, angle between implants, and experience of the operator was evaluated. Many studies have shown that trueness tends to decrease as the distance between the implants and the scan range increases. It was agreed that the implant angle did not affect either trueness or precision. Regarding other factors, the results varied among studies. Therefore, the effects of these parameters are not clear. CONCLUSIONS: Heterogeneity in the research methodology was prevalent among the studies considered in this review. Therefore, we cannot make a decisive statement regarding the trueness and precision of digital implant impressions by IOSs. So far, the comparison of the numerical values of error between studies has yet to elucidate any clear answers, despite small methodological differences.


Assuntos
Arcada Edêntula , Boca Edêntula , Desenho Assistido por Computador , Humanos , Imageamento Tridimensional , Próteses e Implantes
15.
Int J Implant Dent ; 7(1): 116, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34902092

RESUMO

PURPOSE: To examine the effect of assistive devices on the precision of digital impression for multiple implants placed in the edentulous maxilla. METHODS: A reference model representing an edentulous maxilla with four implants was developed. The digital impression group included three settings: Type 0, without an assistive device; Type 1, with an assistive device connecting only neighboring implants; and Type 2, with an assistive device connecting not only neighboring implants but also the two posterior implants, with perpendicular branches from this bar towards the anterior implants. Digital impressions were made five times for each type using three intraoral scanners (IOSs). For conventional method, silicone impressions and verification jigs were prepared; fabricated plaster models were scanned using a laboratory scanner/industrial 3D scanner. In analysis 1, two-way ANOVA analyzed the effect of IOSs and assistive devices on the precision of digital impressions. In analysis 2, one-way ANOVA compared the silicone impressions, the verification jigs, and the most precise group of digital impressions from analysis 1. RESULTS: In analysis 1, the IOS and assistive device type (F = 25.22, p < .0001) effects and the interaction between these two factors (F = 5.64, p = .0005) were statistically significant. In analysis 2, CON, VJ, and digital impression with Type 2 devices (most precise devices in analysis 1) were compared; better precision was obtained by digital impression with Type 2 device than by CON and VJ (F = 30.08, p < .0001). CONCLUSIONS: For implants placed in an edentulous maxilla, digital impressions with assistive devices can provide better precision compared to silicone impressions and verification jigs.


Assuntos
Implantes Dentários , Boca Edêntula , Tecnologia Assistiva , Desenho Assistido por Computador , Técnica de Moldagem Odontológica , Humanos , Imageamento Tridimensional , Maxila/cirurgia , Modelos Dentários , Silicones
16.
Mol Genet Genomics ; 284(2): 95-103, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20596726

RESUMO

MicroRNAs (miRNAs) are an abundant class of small non-coding RNAs that collectively regulate the expression of a large number of mRNAs by either promoting destabilization or repressing translation, or both. Therefore, they play a major role in shaping the transcriptomes and proteomes of eukaryotic organisms. Typically, animal miRNAs are produced from long primary transcripts with one or more of hairpin structures by two sequential processing reactions: one by Drosha in the nucleus and the other by Dicer in the cytoplasm. However, deviations from this paradigm have been observed: subclasses of miRNAs, which only partially meet the classical definition of a miRNA, are derived by alternative biogenesis pathways, thereby providing an additional level of complexity to miRNA-dependent regulation of gene expression.


Assuntos
MicroRNAs/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA Helicases DEAD-box , Eucariotos , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/fisiologia , RNA Mensageiro/genética , RNA não Traduzido/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
17.
Methods Mol Biol ; 442: 29-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369776

RESUMO

Recent studies have revealed that Argonaute proteins are crucial components of the RNA-induced silencing complexes (RISCs) that direct both small interfering RNA (siRNA)- and microRNA (miRNA)-mediated gene silencing. Full complementarity between the small RNA and its target messenger RNA (mRNA) results in RISC-mediated cleavage ("Slicing") of the target mRNA. A subset of Argonaute proteins directly contributes to the target cleavage ("Slicer") activity of the RISC. We describe (in vitro) Slicer assays using endogenous Argonaute protein immunopurified from animal cells and recombinant Argonaute protein produced in and purified from Escherichia coli.


Assuntos
Proteínas de Drosophila/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , RNA/metabolismo , Animais , Proteínas Argonautas , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos , Inativação Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/química , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
Nat Struct Mol Biol ; 25(11): 1059, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30353197

RESUMO

In the version of this paper originally published, in the PDF references 48-55 appeared in the reference list for the Methods section although they should have been in the reference list for the main text. The error has been corrected in the PDF now available.

19.
Nat Struct Mol Biol ; 25(10): 940-950, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30275517

RESUMO

Nonsense-mediated messenger RNA decay (NMD) controls mRNA quality and degrades physiologic mRNAs to fine-tune gene expression in changing developmental or environmental milieus. NMD requires that its targets are removed from the translating pool of mRNAs. Since the decay steps of mammalian NMD remain unknown, we developed assays to isolate and sequence direct NMD decay intermediates transcriptome-wide based on their co-immunoprecipitation with phosphorylated UPF1, which is the active form of this essential NMD factor. We show that, unlike steady-state UPF1, phosphorylated UPF1 binds predominantly deadenylated mRNA decay intermediates and activates NMD cooperatively from 5'- and 3'-ends. We leverage method modifications to characterize the 3'-ends of NMD decay intermediates, show that they are ribosome-bound, and reveal that some are subject to the addition of non-templated nucleotide. Uridines are added by TUT4 and TUT7 terminal uridylyl transferases and removed by the Perlman syndrome-associated exonuclease DIS3L2. The addition of other non-templated nucleotides appears to inhibit decay.


Assuntos
Regulação da Expressão Gênica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Exorribonucleases/fisiologia , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/fisiologia , Células HEK293 , Humanos , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia
20.
Science ; 356(6340): 859-862, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28546213

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression. The pathways that mediate mature miRNA decay are less well understood than those that mediate miRNA biogenesis. We found that functional miRNAs are degraded in human cells by the endonuclease Tudor-SN (TSN). In vitro, recombinant TSN initiated the decay of both protein-free and Argonaute 2-loaded miRNAs via endonucleolytic cleavage at CA and UA dinucleotides, preferentially at scissile bonds located more than five nucleotides away from miRNA ends. Cellular targets of TSN-mediated decay defined using microRNA sequencing followed this rule. Inhibiting TSN-mediated miRNA decay by CRISPR-Cas9 knockout of TSN inhibited cell cycle progression by up-regulating a cohort of miRNAs that down-regulates mRNAs that encode proteins critical for the G1-to-S phase transition. Our study indicates that targeting TSN nuclease activity could inhibit pathological cell proliferation.


Assuntos
Endonucleases/metabolismo , Fase G1 , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade de RNA , Fase S , Proteínas Argonautas/metabolismo , Células HEK293 , Humanos , MicroRNAs/química , MicroRNAs/genética , Complexo de Inativação Induzido por RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA