Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 773-781, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148506

RESUMO

We report the observation of superconductivity in (Pt0.2Ir0.8)3Zr5 with a chiral space group (P6122) at low temperatures. The bulk nature of the superconductivity at a transition temperature of 2.2 K was confirmed using specific heat measurements. We revealed that (Pt0.2Ir0.8)3Zr5 obeys the weak-coupling Bardeen-Cooper-Schrieffer model, and the dominant mechanism in the upper critical field is the orbital pair-breaking limit rather than the Pauli-Clogston limit. This indicates that the antisymmetric spin-orbit coupling caused by the chiral crystal structure does not significantly affect the superconductivity of (Pt0.2Ir0.8)3Zr5.

2.
Inorg Chem ; 60(10): 6964-6970, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33913700

RESUMO

ß-Li3PS4 is a solid electrolyte with high Li+ conductivity, applicable to sulfide-based all-solid-state batteries. While a ß-Li3PS4-synthesized by solid-state reaction forms only in a narrow 300-450 °C temperature range upon heating, ß-Li3PS4 is readily available by liquid-phase synthesis through low-temperature thermal decomposition of complexes composed of PS43- and various organic solvents. However, the conversion mechanism of ß-Li3PS4 from these complexes is not yet understood. Herein, we proposed the synthesis mechanism of ß-Li3PS4 from Li3PS4·acetonitrile (Li3PS4·ACN) and Li3PS4·1,2-dimethoxyethane (Li3PS4·DME), whose structural similarity with ß-Li3PS4 would reduce the nucleation barrier for the formation of ß-Li3PS4. Synchrotron X-ray diffraction clarified that both complexes possess similar layered structures consisting of alternating Li2PS4- and Li+-ACN/DME layers. ACN/DME was removed from these complexes upon heating, and rotation of the PS4 tetrahedra induced a uniaxial compression to form the ß-Li3PS4 framework.

3.
Inorg Chem ; 58(11): 7628-7633, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31074617

RESUMO

Silver bismuth diselenide (AgBiSe2) is an n-type thermoelectric material that exhibits a complex structural phase transition from the hexagonal to cubic phase, while silver antimony diselenide (AgSbSe2) is a p-type thermoelectric material that crystallizes in the cubic phase at all temperatures. Here, we investigate the crystal structure and thermoelectric properties of Ag(Bi,Sb)Se2 solid solution, employing AgBi0.9Sb0.1Se2 and AgBi0.7Sb0.3Se2 as representative samples. The carrier polarity of AgBi0.9Sb0.1Se2 is converted from the n-type to p-type by Pb doping, accompanied by a polymorphic change to the cubic phase. It is difficult to obtain highly conductive p-type hexagonal AgBiSe2-based materials, although first-principles calculations predict high-performance thermoelectric properties for these systems. We also demonstrate that cubic AgBi0.7Sb0.3Se2 undergoes a polymorphic change to the hexagonal phase upon Nb doping. The present study show that polymorphic changes inevitably occurred upon Pb/Nb doping to optimize thermoelectric properties of Ag(Bi,Sb)Se2 solid solution.

4.
Inorg Chem ; 57(9): 5364-5370, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676897

RESUMO

Ce1- xPr xOBiS2 powders and Ce0.5Pr0.5OBiS2 single crystals were synthesized and their structure and superconductive properties were examined by X-ray diffraction, X-ray absorption, electronic resistivity, and magnetization. While PrOBiS2 was found to be in a monoclinic phase with one-dimensional Bi-S zigzag chains showing no superconductive transition above 0.1 K, CeOBiS2 was in a tetragonal phase with two-dimensional Bi-S planes showing zero resistivity below 1.3 K. In the range x = 0.3-0.9 in Ce1- xPr xOBiS2, both monoclinic and tetragonal phases were formed together with zero resistivity up to a maximum temperature of 2.2 K. A Ce0.5Pr0.5OBiS2 single crystal, which showed both zero resistivity and a decrease in magnetization at ∼2.4 K, presented a tetragonal structure. Short Bi-S bonding in flat two-dimensional Bi-S planes and mixed Ce3+/Ce4+ were characteristic features of the Ce0.5Pr0.5OBiS2 single crystal, which presumably triggered its superconductivity.

5.
Chem Rec ; 16(2): 633-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821763

RESUMO

Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials.

6.
Inorg Chem ; 55(7): 3674-9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27008368

RESUMO

The novel oxysulfides La2Ta2ZrS2O8 (LTZSO), La2Ta2TiS2O8 (LTTSO), and La2Nb2TiS2O8 (LNTSO) were synthesized, and their crystal structures, electronic structures, and photocatalytic activities for water splitting under visible light were investigated. Density functional theory calculations showed that these compounds are direct-band-gap semiconductors. Close to the conduction band minimum, the main contribution to the band structure comes from the d orbitals of Zr or Ti ions, while the region near the valence band maximum is associated with the 3p orbitals of S ions. The absorption-edge wavelength was determined to be 540 nm for LTZSO and 700 nm for LTTSO and LNTSO. An analysis of the crystal structure using synchrotron X-ray diffraction revealed that these compounds contained antisite defects at transition metal ion sites, and these were considered to be the origin of the broad absorption at wavelengths longer than that corresponding to band-gap excitation. LTZSO was revealed to be active in the oxygen evolution reaction from aqueous solution containing a sacrificial electron acceptor under visible-light illumination. This result was supported by the band alignment and flat-band potential determined by photoelectron spectroscopy and Mott-Schottky plots.

7.
Inorg Chem ; 54(21): 10462-7, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26479778

RESUMO

The relationship between the structure and superconductivity of Bi4O4S3 powders synthesized by heating under ambient and high pressures was investigated using synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy (TEM) observation. The Bi4O4S3 powders synthesized under ambient pressure exhibited a strong superconductivity (diamagnetic) signal and zero resistivity below ∼4.5 K, while the Bi4O4S3 powder synthesized by the high-pressure method exhibited a low-intensity signal down to 2 K. Further annealing of the latter Bi4O4S3 powder under ambient pressure led to the development of a strong signal and zero resistivity. The crystal structures of all Bi4O4S3 phases consisted of Bi4O4Bi2S4 blocks including a Bi-S layer and anion(s) sandwiched between Bi4O4Bi2S4 blocks, but minor structural differences were detected. A comparison of the structures of the superconductive and nonsuperconductive Bi4O4S3 samples suggested that the superconductive Bi4O4S3 phases had slightly smaller lattice parameters. The average structures of the superconductive Bi4O4S3 phases were characterized by a slightly shorter and less bent Bi-S plane. Raman spectroscopy detected vibration of the S-O bonds, which can be attributed to sandwiched anion(s) such as SO4(2-). TEM observation showed stacking faults in the superconductive Bi4O4S3 phases, which indicated local fluctuation of the average structures. The observed superconductivity of Bi4O4S3 was discussed based on impurity phases, enhanced hybridization of the px and py orbitals of the Bi-S plane within Bi4O4Bi2S4 blocks, local fluctuation of the average structures, compositional deviation related to suspicious anion(s) sandwiched between Bi4O4Bi2S4 blocks, and the possibility of suppression of the charge-density-wave state by enriched carrier concentrations.


Assuntos
Bismuto/química , Enxofre/química , Microscopia Eletrônica de Transmissão , Análise Espectral Raman , Difração de Raios X
8.
Sci Rep ; 13(1): 1008, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653405

RESUMO

Recently, c-axis negative thermal expansion (NTE) was observed in a CoZr2 superconductor and related transition-metal zirconides. Here, we investigated the structural, electronic, and superconducting properties of Co1-xNixZr2 to achieve systematic control of c-axis NTE and switching from NTE to positive thermal expansion (PTE) by Ni substitution. At x ≤ 0.3, c-axis NTE was observed, and the thermal expansion constant αc approached zero with increasing x. At x = 0.4-0.6, c-axis thermal expansion close to zero thermal expansion (ZTE) was observed, and PTE appeared for x ≥ 0.7. On the superconducting properties, we observed bulk superconductivity for x ≤ 0.6, and bulk nature of superconductivity is suppressed by Ni heavy doping (x ≥ 0.7). For x ≤ 0.6, the evolution of the electronic density of states well explains the change in the superconducting transition temperature (Tc), which suggests conventional phonon-mediated superconductivity in the system. By analyzing the c/a ratio, we observed a possible collapsed transition in the tetragonal lattice at around x = 0.6-0.8. The lattice collapse would be the cause of the suppression of superconductivity in Ni-rich Co1-xNixZr2 and the switching from NTE to PTE.

9.
Sci Rep ; 13(1): 22458, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105267

RESUMO

We report the first observation of bulk superconductivity of a η-carbide-type oxide Zr4Pd2O. The crystal structure and the superconducting properties were studied through synchrotron X-ray diffraction, magnetization, electrical resistivity, and specific heat measurement. The superconducting transition was observed at Tc = 2.73 K. Our measurement revealed that the η-carbide-type oxide superconductor Zr4Pd2O shows an enhanced upper critical field µ0Hc2(0) = 6.72 T, which violates the Pauli-Clogston limit µ0HP = 5.29 T. On the other hand, we found that the enhanced upper critical field is absent in a Rh analogue Zr4Rh2O. The large µ0Hc2(0) of Zr4Pd2O would be raised from strong spin-orbit coupling with Pd-4d electrons. The discovery of new superconducting properties for Zr4Pd2O would shed light on the further development of η-carbide-type oxide superconductors.

10.
ACS Omega ; 8(12): 11288-11292, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008157

RESUMO

Depending on thermal and pressure conditions, AgInS2 exhibits various crystal structures. In this study, we synthesized a high-purity polycrystalline sample of trigonal AgInS2, which is a layered compound, using a high-pressure synthesis technique. The crystal structure was investigated by synchrotron powder X-ray diffraction and the Rietveld refinement. On the basis of band calculation, X-ray photoelectron spectroscopy, and electrical resistance measurements, we found that the obtained trigonal AgInS2 is a semiconductor. Temperature dependencies of electrical resistance of AgInS2 were measured by a diamond anvil cell up to 31.2 GPa. Although semiconducting behavior was suppressed with pressure, metallic behavior was not observed within the pressure range investigated in this study.

11.
Sci Technol Adv Mater ; 13(5): 054303, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877516

RESUMO

Structural and physical properties of layered chalcogenide superconductors are summarized. In particular, we review the remarkable properties of the Fe-chalcogenide superconductors, FeSe and FeTe-based materials. Furthermore, we introduce the recently discovered BiS2-based layered superconductors and discuss their prospects.

12.
Sci Technol Adv Mater ; 13(5): 054401, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877519

RESUMO

The superconducting transition temperature, Tc, in iron-based solids can be enhanced by applied pressure: Tc increases from 8 to 37 K for the 11-type FeSe when the pressure is raised from 0 to 4 GPa. High-pressure studies can elucidate the mechanism of superconductivity in such novel materials. In this paper, we present a high-pressure study of Fe(Se1-x Te x ) and Fe(Se1-x S x ). In the case of Fe(Se1-x Te x ), the maximum Tc under high pressure did not exceed the Tc of FeSe, which can be attributed to the structural transition to the monoclinic phase. For Fe(Se1-x S x ) (0 < x < 0.3), Tc exhibited a significant increase with pressure; however, the maximum Tc under high pressure did not exceed the Tc of FeSe. This may be due to the disorder induced by substituting S for Se, which is similar to the pressure effect on Tc for the 1111-type superconductor Ca(Fe1-x Co x )AsF. The Tc of Fe(Se1-x S x ) showed a complex behavior below 1 GPa, first decreasing and then increasing with increasing pressure. From high-pressure x-ray diffraction measurements, the Tc (P) curve was correlated with the local structural parameter.

13.
Sci Technol Adv Mater ; 13(5): 054403, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877521

RESUMO

We have characterized the electronic structure of FeSe1-x Te x for various x values using soft x-ray photoemission spectroscopy (SXPES), high-resolution photoemission spectroscopy (HRPES) and inverse photoemission spectroscopy (IPES). The SXPES valence band spectral shape shows that the 2 eV feature in FeSe, which was ascribed to the lower Hubbard band in previous theoretical studies, becomes less prominent with increasing x. HRPES exhibits systematic x dependence of the structure near the Fermi level (EF): its splitting near EF and filling of the pseudogap in FeSe. IPES shows two features, near EF and approximately 6 eV above EF; the former may be related to the Fe 3d states hybridized with chalcogenide p states, while the latter may consist of plane-wave-like and Se d components. In the incident electron energy dependence of IPES, the density of states near EF for FeSe and FeTe has the Fano lineshape characteristic of resonant behavior. These compounds exhibit different resonance profiles, which may reflect the differences in their electronic structures. By combining the PES and IPES data the on-site Coulomb energy was estimated at 3.5 eV for FeSe.

14.
R Soc Open Sci ; 9(3): 211874, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35360352

RESUMO

REBa2Cu3O7- δ (RE123, RE: rare earth) is one of the high-temperature superconductors with a transition temperature (T c) exceeding 90 K. Because of its high-T c and large critical current density (J c) under magnetic fields, RE123 superconductors have been expected to play a key role in superconductivity application. To accelerate application researches on RE123-based devices, further improvements of J c characteristics have been desired. In this study, we investigated the effects of high-entropy alloying at the RE site on the superconducting properties, through the measurements of local (intra-grain) J c ( J c local ) by a remanent magnetization method. We found that J c local shows a trend to be improved when four or five RE elements are mixed at the RE site, which results in high configurational entropy of mixing (ΔS mix). All samples exhibited an order of few MA cm-2 which is a criterion for practical application and the highest J c local resulted in a value of around 7.0 MA cm-2 at T = 2.0 K. Because high-entropy alloying can improve J c local of RE123 superconductors, our entropy-engineering strategy introduced here would be useful for the development of RE123 superconducting materials available under high magnetic fields.

15.
Sci Rep ; 12(1): 288, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997165

RESUMO

Centrosymmetric compounds with local inversion symmetry breaking have tremendously interesting and intriguing physical properties. In this study, we focus on a BiCh2-based (Ch: S, Se) layered superconductor, as a system with local inversion asymmetry, because spin polarisation based on the Rashba-Dresselhaus-type spin-orbit coupling has been observed in centrosymmetric BiCh2-based LaOBiS2 systems, while the BiCh2 layer lacks local inversion symmetry. Herein, we report the existence of extremely high in-plane upper critical fields in the BiCh2-based system LaO0.5F0.5BiS2-xSex (x = 0.22 and 0.69). The superconducting states are not completely suppressed by the applied magnetic fields with strengths up to 55 T. Thus, we consider that the in-plane upper critical field is enhanced by the local inversion symmetry breaking and its layered structure. Our study will open a new pathway for the discovery of superconductors that exhibit a high upper critical field by focusing on the local inversion symmetry breaking.

16.
Materials (Basel) ; 15(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407946

RESUMO

Recently, high-entropy alloys (HEAs) and HEA-type compounds have been extensively studied in the fields of material science and engineering. In this article, we report on the synthesis of a layered system MBi2Te4 where the M site possesses low-, middle-, and high-entropy states. The samples with M = Pb, Ag1/3Pb1/3Bi1/3, and Ag1/5In1/5Sn1/5Pb1/5Bi1/5 were newly synthesized and the crystal structure was examined by synchrotron X-ray diffraction and Rietveld refinement. We found that the M-Te2 distance was systematically compressed with decreasing lattice constants, where the configurational entropy of mixing at the M site is also systematically increased. The details of structural refinements and the electrical transport property are presented.

17.
Sci Rep ; 12(1): 7789, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552481

RESUMO

High-entropy-alloy (HEA) superconductors are a new class of disordered superconductors. However, commonality of superconducting characteristics of HEA materials is unclear. Here, we have investigated the crystal and electronic structure, and the robustness of superconducting states in a HEA-type metal telluride (MTe; M = Ag, In, Sn, Pb, Bi) under high pressure, and the results were compared with the pressure effects for a middle-entropy system (AgPbBiTe3) and a reference system of PbTe. When the crystal structure is CsCl-type, all phases show superconductivity under high pressure but exhibit different pressure dependences of the transition temperature (Tc). For PbTe, its Tc decreases with pressure. In contrast, the Tc of HEA-type AgInSnPbBiTe5 is almost independent of pressure, for pressures ranging from 13.0 to 35.1 GPa. Those results suggest that the robustness of superconductivity to external pressure is linked to the configurational entropy of mixing at the M site in MTe. Since the trend is quite similar to previous work on a HEA (Ti-Zr-Hf-Nb-Ta), where the robustness of superconductivity was observed up to ~ 200 GPa, we propose that the robustness of superconductivity under high pressure would be a universal feature in HEA-type superconductors.

18.
J Phys Condens Matter ; 33(47)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34412049

RESUMO

BiCh2-based (Ch: S, Se) layered superconductors have attracted extensive attentions because of variation of materials and physical characteristics, which include relatively large spin-orbit coupling originating from bismuth 6porbitals, and the possibility of anisotropic superconducting gap. Some of theoretical studies suggested that anisotropic superconductivity is realized in the BiCh2-based superconductors. In experimental studies, angle-resolved photoemission spectroscopy measurement on the superconducting states of Nd(O,F)BiS2have revealed the anisotropic structure of the superconducting gap, and the absence of isotope effect have been reported, indicating unconventional superconductivity pairing. Furthermore, two-fold-symmetric in-plane anisotropy of magnetoresistance have been observed in the superconducting states of some of Bi(S,Se)2-based systems like La(O,F)Bi(S,Se)2while the crystal structure possesses a tetragonal square plane with four-fold symmetry. Those results indicate nematic superconductivity is emerging in BiCh2-based superconductors. On the basis of the observations suggesting unconventional superconductivity in BiCh2-based systems, clarification of pairing mechanisms of superconductivity in BiCh2-based superconductors have been highly desired. In this article, we review experimental results on the superconducting gap structure, the pairing mechanism, and related phenomena of BiCh2-based superconductors.

19.
Sci Rep ; 11(1): 230, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469088

RESUMO

Investigation of isotope effects on superconducting transition temperature (Tc) is one of the useful methods to examine whether electron-phonon interaction is essential for pairing mechanisms. The layered BiCh2-based (Ch: S, Se) superconductor family is a candidate for unconventional superconductors, because unconventional isotope effects have previously been observed in La(O,F)BiSSe and Bi4O4S3. In this study, we investigated the isotope effects of 32S and 34S in the high-pressure phase of (Sr,La)FBiS2, which has a monoclinic crystal structure and a higher Tc of ~ 10 K under high pressures, and observed conventional-type isotope shifts in Tc. The conventional-type isotope effects in the monoclinic phase of (Sr,La)FBiS2 are different from the unconventional isotope effects observed in La(O,F)BiSSe and Bi4O4S3, which have a tetragonal structure. The obtained results suggest that the pairing mechanisms of BiCh2-based superconductors could be switched by a structural-symmetry change in the superconducting layers induced by pressure effects.

20.
J Phys Condens Matter ; 33(22)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607634

RESUMO

The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility measurements. The crystal structure under pressure was examined using synchrotron x-ray diffraction at SPring-8. In the low-pressure regime, bulk superconductivity with a transition temperatureTcof ∼4.5 K was induced by pressure, which was achieved by in-plane chemical pressure effect owing to the compression of the tetragonal structure. In the high-pressure regime above 6.4 GPa, a structural symmetry lowering was observed, and superconducting transitions with aTc∼ 8 K were observed. Our results suggest the possible commonality on the factor essential forTcin Bi-based superconductors with two-layer-type and four-layer-type conducting layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA