Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2313683121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905237

RESUMO

Strigolactones (SLs) are plant apocarotenoids with diverse roles and structures. Canonical SLs, widespread and characterized by structural variations in their tricyclic lactone (ABC-ring), are classified into two types based on C-ring configurations. The steric C-ring configuration emerges during the BC-ring closure, downstream of the biosynthetic intermediate, carlactonoic acid (CLA). Most plants produce either type of canonical SLs stereoselectively, e.g., tomato (Solanum lycopersicum) yields orobanchol with an α-oriented C-ring. The mechanisms driving SL structural diversification are partially understood, with limited insight into functional implications. Furthermore, the exact molecular mechanism for the stereoselective BC-ring closure reaction is yet to be known. We identified an enzyme, the stereoselective BC-ring-forming factor (SRF), from the dirigent protein (DIR) family, specifically the DIR-f subfamily, whose biochemical function had not been characterized, making it a key enzyme in stereoselective canonical SL biosynthesis with the α-oriented C-ring. We first confirm the precise catalytic function of the tomato cytochrome P450 SlCYP722C, previously shown to be involved in orobanchol biosynthesis [T. Wakabayashi et al., Sci. Adv. 5, eaax9067 (2019)], to convert CLA to 18-oxocarlactonoic acid. We then show that SRF catalyzes the stereoselective BC-ring closure reaction of 18-oxocarlactonoic acid, forming orobanchol. Our methodology combines experimental and computational techniques, including SRF structure prediction and conducting molecular dynamics simulations, suggesting a catalytic mechanism based on the conrotatory 4π-electrocyclic reaction for the stereoselective BC-ring formation in orobanchol. This study sheds light on the molecular basis of how plants produce SLs with specific stereochemistry in a controlled manner.


Assuntos
Lactonas , Lactonas/metabolismo , Lactonas/química , Estereoisomerismo , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883279

RESUMO

Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.


Assuntos
Angelica/genética , Citrus paradisi/genética , Evolução Molecular , Furocumarinas/biossíntese , Proteínas de Plantas/genética , Prenilação , Angelica/metabolismo , Citrus paradisi/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
3.
Plant Cell Physiol ; 64(7): 826-838, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37178336

RESUMO

Sterols are essential components of eukaryotic cell membranes. However, studies on sterol biosynthesis in bryophytes are limited. This study analyzed the sterol profiles in the bryophyte model plant Marchantia polymorpha L. The thalli contained typical phytosterols such as campesterol, sitosterol and stigmasterol. BLASTX analysis of the M. polymorpha genome against the Arabidopsis thaliana sterol biosynthetic genes confirmed the presence of all the enzymes responsible for sterol biosynthesis in M. polymorpha. We further focused on characterizing two genes, MpDWF5A and MpDWF5B, which showed high homology with A. thaliana DWF5, encoding Δ5,7-sterol Δ7-reductase (C7R). Functional analysis using a yeast expression system revealed that MpDWF5A converted 7-dehydrocholesterol to cholesterol, indicating that MpDWF5A is a C7R. Mpdwf5a-knockout (Mpdwf5a-ko) lines were constructed using CRISPR/Cas9-mediated genome editing. Gas chromatography-mass spectrometry analysis of Mpdwf5a-ko revealed that phytosterols such as campesterol, sitosterol and stigmasterol disappeared, and instead, the corresponding Δ7-type sterols accumulated. The thalli of Mpdwf5a-ko grew smaller than those of the wild type, and excessive formation of apical meristem in the thalli was observed. In addition, the gemma cups of the Mpdwf5a-ko were incomplete, and only a limited number of gemma formations were observed. Treatment with 1 µM of castasterone or 6-deoxocastasterone, a bioactive brassinosteroid (BR), partly restored some of these abnormal phenotypes, but far from complete recovery. These results indicate that MpDWF5A is essential for the normal growth and development of M. polymorpha and suggest that the dwarfism caused by the Mpdwf5a-ko defect is due to the deficiency of typical phytosterols and, in part, a BR-like compound derived from phytosterols.


Assuntos
Arabidopsis , Marchantia , Fitosteróis , Esteróis , Oxirredutases/metabolismo , Sitosteroides , Marchantia/genética , Marchantia/metabolismo , Estigmasterol , Brassinosteroides , Crescimento e Desenvolvimento
4.
Plant J ; 108(1): 81-92, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273198

RESUMO

Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Solanina/análogos & derivados , Solanum tuberosum/genética , 4-Aminobutirato Transaminase/genética , Edição de Genes , Hidroxilação , Cetocolesteróis/biossíntese , Cetocolesteróis/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/fisiologia , Saponinas/biossíntese , Saponinas/química , Solanina/química , Solanina/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologia
5.
Plant J ; 105(4): 1026-1034, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211343

RESUMO

Ectopic expression of the apple 2-oxoglutarate-dependent dioxygenase (DOX, 2ODD) gene, designated MdDOX-Co, is thought to cause the columnar shape of apple trees. However, the mechanism underlying the formation of such a unique tree shape remains unclear. To solve this problem, we demonstrated that Arabidopsis thaliana overexpressing MdDOX-Co contained reduced levels of biologically active gibberellin (GA) compared with wild type. In summary: (i) with biochemical approaches, the gene product MdDOX-Co was shown to metabolize active GA A4 (GA4 ) to GA58 (12-OH-GA4 ) in vitro. MdDOX-Co also metabolized its precursors GA12 and GA9 to GA111 (12-OH-GA12 ) and GA70 (12-OH-GA9 ), respectively; (ii) Of the three 12-OH-GAs, GA58 was still active physiologically, but not GA70 or GA111 ; (iii) Arabidopsis MdDOX-Co OE transformants converted exogenously applied deuterium-labeled (d2 )-GA12 to d2 -GA111 but not to d2 -GA58 , whereas transformants converted applied d2 -GA9 to d2 -GA58 ; (iv) GA111 is converted poorly to GA70 by GA 20-oxidases in vitro when GA12 is efficiently metabolized to GA9 ; (v) no GA58 was detected endogenously in MdDOX-Co OE transformants. Overall, we conclude that 12-hydroxylation of GA12 by MdDOX-Co prevents the biosynthesis of biologically active GAs in planta, resulting in columnar phenotypes.


Assuntos
Genes de Plantas/genética , Giberelinas/metabolismo , Malus/genética , Reguladores de Crescimento de Plantas/metabolismo , Árvores/genética , Arabidopsis , Dioxigenases/metabolismo , Genes de Plantas/fisiologia , Ácidos Cetoglutáricos/metabolismo , Malus/crescimento & desenvolvimento , Malus/metabolismo , Malus/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/fisiologia
6.
Plant Cell Physiol ; 63(7): 981-990, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35560060

RESUMO

Cultivated tomato (Solanum lycopersicum) contains α-tomatine, a steroidal glycoalkaloid (SGA), which functions as a defense compound to protect against pathogens and herbivores; interestingly, wild species in the tomato clade biosynthesize a variety of SGAs. In cultivated tomato, the metabolic detoxification of α-tomatine during tomato fruit ripening is an important trait that aided in its domestication, and two distinct 2-oxoglutarate-dependent dioxygenases (DOXs), a C-23 hydroxylase of α-tomatine (Sl23DOX) and a C-27 hydroxylase of lycoperoside C (Sl27DOX), are key to this process. There are tandemly duplicated DOX genes on tomato chromosome 1, with high levels of similarity to Sl23DOX. While these DOX genes are rarely expressed in cultivated tomato tissues, the recombinant enzymes of Solyc01g006580 and Solyc01g006610 metabolized α-tomatine to habrochaitoside A and (20R)-20-hydroxytomatine and were therefore named as habrochaitoside A synthase (HAS) and α-tomatine 20-hydroxylase (20DOX), respectively. Furthermore, 20DOX and HAS exist in the genome of wild tomato S. habrochaites accession LA1777, which accumulates habrochaitoside A in its fruits, and their expression patterns were in agreement with the SGA profiles in LA1777. These results indicate that the functional divergence of α-tomatine-metabolizing DOX enzymes results from gene duplication and the neofunctionalization of catalytic activity and gene expression, and this contributes to the structural diversity of SGAs in the tomato clade.


Assuntos
Dioxigenases , Solanum lycopersicum , Dioxigenases/metabolismo , Frutas/genética , Frutas/metabolismo , Duplicação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxigenases de Função Mista/genética
7.
Plant Physiol ; 185(3): 902-913, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793911

RESUMO

Strigolactones (SLs), first identified as germination stimulants for root parasitic weeds, act as endogenous phytohormones regulating shoot branching and as root-derived signal molecules mediating symbiotic communications in the rhizosphere. Canonical SLs typically have an ABCD ring system and can be classified into orobanchol- and strigol-type based on the C-ring stereochemistry. Their simplest structures are 4-deoxyorobanchol (4DO) and 5-deoxystrigol (5DS), respectively. Diverse canonical SLs are chemically modified with one or more hydroxy or acetoxy groups introduced into the A- and/or B-ring of these simplest structures, but the biochemical mechanisms behind this structural diversity remain largely unexplored. Sorgomol in sorghum (Sorghum bicolor [L.] Moench) is a strigol-type SL with a hydroxy group at C-9 of 5DS. In this study, we characterized sorgomol synthase. Microsomal fractions prepared from a high-sorgomol-producing cultivar of sorghum, Sudax, were shown to convert 5DS to sorgomol. A comparative transcriptome analysis identified SbCYP728B subfamily as candidate genes encoding sorgomol synthase. Recombinant SbCYP728B35 catalyzed the conversion of 5DS to sorgomol in vitro. Substrate specificity revealed that the C-8bS configuration in the C-ring of 5DS stereoisomers was essential for this reaction. The overexpression of SbCYP728B35 in Lotus japonicus hairy roots, which produce 5DS as an endogenous SL, also resulted in the conversion of 5DS to sorgomol. Furthermore, SbCYP728B35 expression was not detected in nonsorgomol-producing cultivar, Abu70, suggesting that this gene is responsible for sorgomol production in sorghum. Identification of the mechanism modifying parental 5DS of strigol-type SLs provides insights on how plants biosynthesize diverse SLs.


Assuntos
Lactonas/metabolismo , Sorghum/metabolismo , Estereoisomerismo
8.
Biosci Biotechnol Biochem ; 86(8): 998-1003, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35561745

RESUMO

Strigolactones (SLs), which are known as rhizosphere signaling molecules and plant hormones regulating shoot architecture, are classified into 2 distinct groups, canonical and noncanonical SLs, based on their structures. Avenaol, a noncanonical SL found in the root exudates of black oat (Avena strigosa), has a characteristic bicyclo[4.1.0]heptane skeleton. Elucidating the biosynthetic mechanism of this peculiar structure is a challenge for further understanding of the structural diversification of noncanonical SLs. In this study, a novel noncanonical SL, 6-epi-heliolactone in black oat root exudates was identified. Feeding experiments showed that 6-epi-heliolactone was a biosynthetic intermediate between methyl carlactonoate and avenaol. Inhibitor experiments proposed the involvement of 2-oxoglutarate-dependent dioxygenase in converting 6-epi-heliolactone to avenaol. These results provide new insights into the stereochemistry diversity of noncanonical SLs and a basis to explore the biosynthetic pathway causing avenaol.


Assuntos
Avena , Lactonas , Avena/metabolismo , Compostos Bicíclicos com Pontes , Ciclopropanos , Lactonas/química , Reguladores de Crescimento de Plantas/metabolismo
9.
Plant Cell Physiol ; 62(5): 775-783, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100555

RESUMO

Tomato (Solanum lycopersicum) contains α-tomatine, a steroidal glycoalkaloid that contributes to the plant defense against pathogens and herbivores through its bitter taste and toxicity. It accumulates at high levels in all the plant tissues, especially in leaves and immature green fruits, whereas it decreases during fruit ripening through metabolic conversion to the nontoxic esculeoside A, which accumulates in the mature red fruit. This study aimed to identify the gene encoding a C-27 hydroxylase that is a key enzyme in the metabolic conversion of α-tomatine to esculeoside A. The E8 gene, encoding a 2-oxoglutalate-dependent dioxygenase, is well known as an inducible gene in response to ethylene during fruit ripening. The recombinant E8 was found to catalyze the C-27 hydroxylation of lycoperoside C to produce prosapogenin A and is designated as Sl27DOX. The ripe fruit of E8/Sl27DOX-silenced transgenic tomato plants accumulated lycoperoside C and exhibited decreased esculeoside A levels compared with the wild-type (WT) plants. Furthermore, E8/Sl27DOX deletion in tomato accessions resulted in higher lycoperoside C levels in ripe fruits than in WT plants. Thus, E8/Sl27DOX functions as a C-27 hydroxylase of lycoperoside C in the metabolic detoxification of α-tomatine during tomato fruit ripening, and the efficient detoxification by E8/27DOX may provide an advantage in the domestication of cultivated tomatoes.


Assuntos
Frutas/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Tomatina/análogos & derivados , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Oxigenases de Função Mista/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saponinas/metabolismo , Especificidade por Substrato , Tomatina/metabolismo
10.
Planta ; 254(5): 88, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586497

RESUMO

MAIN CONCLUSION: An Arabidopsis S-adenosyl-L-methionine-dependent methyltransferase belonging to the SABATH family catalyzes the specific carboxymethylation of (11R)-carlactonoic acid. Methyl carlactonoate (MeCLA), found in Arabidopsis (Arabidopsis thaliana) as a non-canonical strigolactone (SL), may be a biosynthetic intermediate of various non-canonical SLs and biologically active as a plant hormone. MeCLA is formed from carlactonoic acid (CLA), but the methyltransferases (MTs) converting CLA to MeCLA remain unclear. Previous studies have demonstrated that the carboxymethylation of acidic plant hormones is catalyzed by the same protein family, the SABATH family (Wang et al. in Evol Bioinform 15:117693431986086. https://doi.org/10.1177/1176934319860864 , 2019). In the present study, we focused on the At4g36470 gene, an Arabidopsis SABATH MT gene co-expressed with the MAX1 gene responsible for CLA formation for biochemical characterization. The recombinant At4g36470 protein expressed in Escherichia coli exhibited exclusive activity against naturally occurring (11R)-CLA among the substrates, including CLA enantiomers and a variety of acidic plant hormones. The apparent Km value for (11R)-CLA was 1.46 µM, which was relatively smaller than that of the other Arabidopsis SABATH MTs responsible for the carboxymethylation of acidic plant hormones. The strict substrate specificity and high affinity of At4g36470 suggested it is an (11R)-CLA MT. We also confirmed the function of the identified gene by reconstructing MeCLA biosynthesis using transient expression in Nicotiana benthamiana. Phylogenetic analysis demonstrated that At4g36470 and its orthologs in non-canonical SL-producing plants cluster together in an exclusive clade, suggesting that the SABATH MTs of this clade may be involved in the carboxymethylation of CLA and the biosynthesis of non-canonical SLs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Reguladores de Crescimento de Plantas
11.
Plant J ; 99(6): 1127-1143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095780

RESUMO

Glycyrrhizin, a sweet triterpenoid saponin found in the roots and stolons of Glycyrrhiza species (licorice), is an important active ingredient in traditional herbal medicine. We previously identified two cytochrome P450 monooxygenases, CYP88D6 and CYP72A154, that produce an aglycone of glycyrrhizin, glycyrrhetinic acid, in Glycyrrhiza uralensis. The sugar moiety of glycyrrhizin, which is composed of two glucuronic acids, makes it sweet and reduces its side-effects. Here, we report that UDP-glycosyltransferase (UGT) 73P12 catalyzes the second glucuronosylation as the final step of glycyrrhizin biosynthesis in G. uralensis; the UGT73P12 produced glycyrrhizin by transferring a glucuronosyl moiety of UDP-glucuronic acid to glycyrrhetinic acid 3-O-monoglucuronide. We also obtained a natural variant of UGT73P12 from a glycyrrhizin-deficient (83-555) strain of G. uralensis. The natural variant showed loss of specificity for UDP-glucuronic acid and resulted in the production of an alternative saponin, glucoglycyrrhizin. These results are consistent with the chemical phenotype of the 83-555 strain, and suggest the contribution of UGT73P12 to glycyrrhizin biosynthesis in planta. Furthermore, we identified Arg32 as the essential residue of UGT73P12 that provides high specificity for UDP-glucuronic acid. These results strongly suggest the existence of an electrostatic interaction between the positively charged Arg32 and the negatively charged carboxy group of UDP-glucuronic acid. The functional arginine residue and resultant specificity for UDP-glucuronic acid are unique to UGT73P12 in the UGT73P subfamily. Our findings demonstrate the functional specialization of UGT73P12 for glycyrrhizin biosynthesis during divergent evolution, and provide mechanistic insights into UDP-sugar selectivity for the rational engineering of sweet triterpenoid saponins.


Assuntos
Glicosiltransferases/metabolismo , Glycyrrhiza uralensis/enzimologia , Ácido Glicirrízico/metabolismo , Arginina/química , Arginina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glicosiltransferases/química , Glicosiltransferases/genética , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrízico/química , Cinética , Simulação de Acoplamento Molecular , Mutação , Filogenia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Saponinas/análise , Transcriptoma , Triterpenos/química , Triterpenos/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
12.
Plant Cell Physiol ; 61(1): 21-28, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816045

RESUMO

Tomato plants (Solanum lycopersicum) contain steroidal glycoalkaloid α-tomatine, which functions as a chemical barrier to pathogens and predators. α-Tomatine accumulates in all tissues and at particularly high levels in leaves and immature green fruits. The compound is toxic and causes a bitter taste, but its presence decreases through metabolic conversion to nontoxic esculeoside A during fruit ripening. This study identifies the gene encoding a 23-hydroxylase of α-tomatine, which is a key to this process. Some 2-oxoglutarate-dependent dioxygenases were selected as candidates for the metabolic enzyme, and Solyc02g062460, designated Sl23DOX, was found to encode α-tomatine 23-hydroxylase. Biochemical analysis of the recombinant Sl23DOX protein demonstrated that it catalyzes the 23-hydroxylation of α-tomatine and the product spontaneously isomerizes to neorickiioside B, which is an intermediate in α-tomatine metabolism that appears during ripening. Leaves of transgenic tomato plants overexpressing Sl23DOX accumulated not only neorickiioside B but also another intermediate, lycoperoside C (23-O-acetylated neorickiioside B). Furthermore, the ripe fruits of Sl23DOX-silenced transgenic tomato plants contained lower levels of esculeoside A but substantially accumulated α-tomatine. Thus, Sl23DOX functions as α-tomatine 23-hydroxylase during the metabolic processing of toxic α-tomatine in tomato fruit ripening and is a key enzyme in the domestication of cultivated tomatoes.


Assuntos
Oxigenases de Função Mista/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Paladar , Tomatina/análogos & derivados , Tomatina/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Metabólica , Solanum lycopersicum/genética , Oxigenases de Função Mista/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes
13.
Planta ; 251(5): 97, 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32306106

RESUMO

MAIN CONCLUSION: CYP722C from cotton, a homolog of the enzyme involved in orobanchol synthesis in cowpea and tomato, catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Strigolactones (SLs) are important phytohormones with roles in the regulation of plant growth and development. These compounds also function as signaling molecules in the rhizosphere by interacting with beneficial arbuscular mycorrhizal fungi and harmful root parasitic plants. Canonical SLs, such as 5-deoxystrigol (5DS), consist of a tricyclic lactone ring (ABC-ring) connected to a methylbutenolide (D-ring). Although it is known that 5DS biosynthesis begins with carlactonoic acid (CLA) derived from ß-carotene, the enzyme that catalyzes the conversion of CLA remains elusive. Recently, we identified cytochrome P450 (CYP) CYP722C as the enzyme that catalyzes direct conversion of CLA to orobanchol in cowpea and tomato (Wakabayashi et al., Sci Adv 5:eaax9067, 2019). Orobanchol has a different C-ring configuration from that of 5DS. The present study aimed to characterize the homologous gene, designated GaCYP722C, from cotton (Gossypium arboreum) to examine whether this gene is involved in 5DS biosynthesis. Expression of GaCYP722C was upregulated under phosphate starvation, which is an SL-producing condition. Recombinant GaCYP722C was expressed in a baculovirus-insect cell expression system and was found to catalyze the conversion of CLA to 5DS but not to 4-deoxyorobanchol. These results strongly suggest that GaCYP722C from cotton is a 5DS synthase and that CYP722C is the crucial CYP subfamily involved in the generation of canonical SLs, irrespective of the different C-ring configurations.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Gossypium/enzimologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Fosfatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Lactonas/química , Espectrometria de Massas , Fosfatos/deficiência , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno/metabolismo
14.
Int J Mol Sci ; 21(16)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824181

RESUMO

The shoot meristem, a stem-cell-containing tissue initiated during plant embryogenesis, is responsible for continuous shoot organ production in postembryonic development. Although key regulatory factors including KNOX genes are responsible for stem cell maintenance in the shoot meristem, how the onset of such factors is regulated during embryogenesis is elusive. Here, we present evidence that the two KNOX genes STM and KNAT6 together with the two other regulatory genes BLR and LAS are functionally important downstream genes of CUC1 and CUC2, which are a redundant pair of genes that specify the embryonic shoot organ boundary. Combined expression of STM with any of KNAT6, BLR, and LAS can efficiently rescue the defects of shoot meristem formation and/or separation of cotyledons in cuc1cuc2 double mutants. In addition, CUC1 and CUC2 are also required for the activation of KLU, a cytochrome P450-encoding gene known to restrict organ production, and KLU counteracts STM in the promotion of meristem activity, providing a possible balancing mechanism for shoot meristem maintenance. Together, these results establish the roles for CUC1 and CUC2 in coordinating the activation of two classes of genes with opposite effects on shoot meristem activity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant J ; 94(6): 975-990, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569783

RESUMO

Steroidal glycoalkaloids (SGAs) are specialized anti-nutritional metabolites that accumulate in Solanum lycopersicum (tomato) and Solanum tuberosum (potato). A series of SGA biosynthetic genes is known to be upregulated in Solanaceae species by jasmonate-responsive Ethylene Response Factor transcription factors, including JRE4 (otherwise known as GAME9), but the exact regulatory significance in planta of each factor has remained unaddressed. Here, via TILLING-based screening of an EMS-mutagenized tomato population, we isolated a JRE4 loss-of-function line that carries an amino acid residue missense change in a region of the protein important for DNA binding. In this jre4 mutant, we observed downregulated expression of SGA biosynthetic genes and decreased SGA accumulation. Moreover, JRE4 overexpression stimulated SGA production. Further characterization of jre4 plants revealed their increased susceptibility to the generalist herbivore Spodoptera litura larvae. This susceptibility illustrates that herbivory resistance is dependent on JRE4-mediated defense responses, which include SGA accumulation. Ethylene treatment attenuated the jasmonate-mediated JRE4 expression induction and downstream SGA biosynthesis in tomato leaves and hairy roots. Overall, this study indicated that JRE4 functions as a primary master regulator of SGA biosynthesis, and thereby contributes toward plant defense against chewing insects.


Assuntos
Proteínas de Plantas/metabolismo , Alcaloides de Solanáceas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Herbivoria , Larva , Solanum lycopersicum/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Spodoptera , Fatores de Transcrição/fisiologia
16.
Plant Cell Physiol ; 60(6): 1304-1315, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892648

RESUMO

α-Tomatine and dehydrotomatine are major steroidal glycoalkaloids (SGAs) that accumulate in the mature green fruits, leaves and flowers of tomato (Solanum lycopersicum), and function as defensive compounds against bacteria, fungi, insects and animals. The aglycone of dehydrotomatine is dehydrotomatidine (5,6-dehydrogenated tomatidine, having the Δ5,6 double bond; the dehydro-type). The aglycone of α-tomatine is tomatidine (having a single bond between C5 and C6; the dihydro-type), which is believed to be derived from dehydrotomatidine via four reaction steps: C3 oxidation, isomerization, C5 reduction and C3 reduction; however, these conversion processes remain uncharacterized. In the present study, we demonstrate that a short-chain alcohol dehydrogenase/reductase designated Sl3ßHSD is involved in the conversion of dehydrotomatidine to tomatidine in tomato. Sl3ßHSD1 expression was observed to be high in the flowers, leaves and mature green fruits of tomato, in which high amounts of α-tomatine are accumulated. Biochemical analysis of the recombinant Sl3ßHSD1 protein revealed that Sl3ßHSD1 catalyzes the C3 oxidation of dehydrotomatidine to form tomatid-4-en-3-one and also catalyzes the NADH-dependent C3 reduction of a 3-ketosteroid (tomatid-3-one) to form tomatidine. Furthermore, during co-incubation of Sl3ßHSD1 with SlS5αR1 (steroid 5α-reductase) the four reaction steps converting dehydrotomatidine to tomatidine were completed. Sl3ßHSD1-silenced transgenic tomato plants accumulated dehydrotomatine, with corresponding decreases in α-tomatine content. Furthermore, the constitutive expression of Sl3ßHSD1 in potato hairy roots resulted in the conversion of potato SGAs to the dihydro-type SGAs. These results demonstrate that Sl3ßHSD1 is a key enzyme involved in the conversion processes from dehydrotomatidine to tomatidine in α-tomatine biosynthesis.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Tomatina/análogos & derivados , 3-Hidroxiesteroide Desidrogenases/genética , Genes de Plantas/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Tomatina/metabolismo
18.
Plant Cell Physiol ; 59(11): 2278-2287, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085233

RESUMO

Plant specialized metabolites are often found as lineage-specific diastereomeric isomers. For example, Sesamum alatum accumulates the specialized metabolite (+)-2-episesalatin, a furofuran-type lignan with a characteristic diastereomeric configuration rarely found in other Sesamum spp. However, little is known regarding how diastereomeric specificity in lignan biosynthesis is implemented in planta. Here, we show that S. alatum CYP81Q3, a P450 orthologous to S. indicum CYP81Q1, specifically catalyzes methylenedioxy bridge (MDB) formation in (+)-epipinoresinol to produce (+)-pluviatilol. Both (+)-epipinoresinol and (+)-pluviatilol are putative intermediates of (+)-2-episesalatin based on their diastereomeric configurations. On the other hand, CYP81Q3 accepts neither (+)- nor (-)-pinoresinol as a substrate. This diastereomeric selectivity of CYP81Q3 is in clear contrast to that of CYP81Q1, which specifically converts (+)-pinoresinol to (+)-sesamin via (+)-piperitol by the sequential formation of two MDBs but does not accept (+)-epipinoresinol as a substrate. Moreover, (+)-pinoresinol does not interfere with the conversion of (+)-epipinoresinol to (+)-pluviatilol by CYP81Q3. Amino acid substitution and CO difference spectral analyses show that polymorphic residues between CYP81Q1 and CYP81Q3 proximal to their putative substrate pockets are crucial for the functional diversity and stability of these two enzymes. Our data provide clues to understanding how the lineage-specific functional differentiation of respective biosynthetic enzymes substantiates the stereoisomeric diversity of lignan structures.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Lignanas/metabolismo , Proteínas de Plantas/metabolismo , Sesamum/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/genética , Sementes/metabolismo , Estereoisomerismo , Especificidade por Substrato
19.
Plant Physiol ; 175(1): 120-133, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754839

RESUMO

Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites that are found in the Solanaceae. Potato (Solanum tuberosum) contains the SGAs α-solanine and α-chaconine, while tomato (Solanum lycopersicum) contains α-tomatine, all of which are biosynthesized from cholesterol. However, although two cytochrome P450 monooxygenases that catalyze the 22- and 26-hydroxylation of cholesterol have been identified, the 16-hydroxylase remains unknown. Feeding with deuterium-labeled cholesterol indicated that the 16α- and 16ß-hydrogen atoms of cholesterol were eliminated to form α-solanine and α-chaconine in potato, while only the 16α-hydrogen atom was eliminated in α-tomatine biosynthesis, suggesting that a single oxidation at C-16 takes place during tomato SGA biosynthesis while a two-step oxidation occurs in potato. Here, we show that a 2-oxoglutarate-dependent dioxygenase, designated as 16DOX, is involved in SGA biosynthesis. We found that the transcript of potato 16DOX (St16DOX) was expressed at high levels in the tuber sprouts, where large amounts of SGAs are accumulated. Biochemical analysis of the recombinant St16DOX protein revealed that St16DOX catalyzes the 16α-hydroxylation of hydroxycholesterols and that (22S)-22,26-dihydroxycholesterol was the best substrate among the nine compounds tested. St16DOX-silenced potato plants contained significantly lower levels of SGAs, and a detailed metabolite analysis revealed that they accumulated the glycosides of (22S)-22,26-dihydroxycholesterol. Analysis of the tomato 16DOX (Sl16DOX) gene gave essentially the same results. These findings clearly indicate that 16DOX is a steroid 16α-hydroxylase that functions in the SGA biosynthetic pathway. Furthermore, St16DOX silencing did not affect potato tuber yield, indicating that 16DOX may be a suitable target for controlling toxic SGA levels in potato.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Alcaloides de Solanáceas/biossíntese , Solanum lycopersicum/enzimologia , Solanum tuberosum/enzimologia , Esteroide 16-alfa-Hidroxilase/metabolismo , Deutério , Fenótipo , Plantas Geneticamente Modificadas
20.
J Exp Bot ; 69(9): 2305-2318, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29294064

RESUMO

Strigolactones (SLs), comprising compounds with diverse but related chemical structures, are determinant signals in elicitation of germination in root parasitic Orobanchaceae and in mycorrhization in plants. Further, SLs are a novel class of plant hormones that regulate root and shoot architecture. Dissecting common and divergent biosynthetic pathways of SLs may provide avenues for modulating their production in planta. Biosynthesis of SLs in various SL-producing plant species was inhibited by fluridone, a phytoene desaturase inhibitor. The plausible biosynthetic precursors of SLs were exogenously applied to plants, and their conversion to canonical and non-canonical SLs was analysed using liquid chromatography-tandem mass spectrometry. The conversion of carlactone (CL) to carlactonoic acid (CLA) was a common reaction in all investigated plants. Sorghum converted CLA to 5-deoxystrigol (5-DS) and sorgomol, and 5-DS to sorgomol. One sorgomol-producing cotton cultivar had the same SL profile as sorghum in the feeding experiments. Another cotton cultivar converted CLA to 5-DS, strigol, and strigyl acetate. Further, 5-DS was converted to strigol and strigyl acetate. Moonseed converted CLA to strigol, but not to 5-DS. The plant did not convert 5-DS to strigol, suggesting that 5-DS is not a precursor of strigol in moonseed. Similarly, 4-deoxyorobanchol was not a precursor of orobanchol in cowpea. Further, sunflower converted CLA to methyl carlactonoate and heliolactone. These results indicated that the biosynthetic pathways of hydroxy SLs do not necessarily involve their respective deoxy SL precursors.


Assuntos
Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Vias Biossintéticas , Gossypium/metabolismo , Helianthus/metabolismo , Menispermum/metabolismo , Sorghum/metabolismo , Especificidade da Espécie , Trifolium/metabolismo , Vigna/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA