Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387393

RESUMO

A real-time and specific for the detection of Monoamine Oxidase B (MAO-B) to investigate the MAO-B-relevant disease development and treatment process is urgently desirable. Here, we utilized MAO-B to catalyze the conversion of propylamino groups to aldehyde groups, which was then quickly followed by a ß-elimination process to produce fluorescent probes (FNJP) that may be used to detect MAO-B in vitro and in vivo. The FNJP probe possesses unique properties, including favorable reactivity (Km = 10.8 µM), high cell permeability, and NIR characteristics (λem = 610 nm). Moreover, the FNJP probe showed high selectivity for MAO-B and was able to detect endogenous MAO-B levels from a mixed population of NIH-3 T3 and HepG2 cells. MAO-B expression was found to be increased in cells under lipopolysaccharide-stimulated cellular oxidative stress in neuronal-like SH-SY5Y cells. In addition, the visualization of FNJP for MAO-B activity in zebrafish can be an effective tool for exploring the biofunctions of MAO-B. Considering these excellent properties, the FNJP probe may be a powerful tool for detecting MAO-B levels in living organisms and can be used for accurate clinical diagnoses of related diseases.


Assuntos
Monoaminoxidase , Neuroblastoma , Animais , Humanos , Monoaminoxidase/metabolismo , Peixe-Zebra/metabolismo , Fluorescência , Células Hep G2 , Corantes Fluorescentes , Inibidores da Monoaminoxidase
2.
Eur J Med Chem ; 272: 116474, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735149

RESUMO

Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.


Assuntos
Monoaminoxidase , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Animais , Humanos , Monoaminoxidase/metabolismo , Camundongos , Xantenos/química , Xantenos/farmacologia , Xantenos/síntese química , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos Nus
3.
ACS Sens ; 5(4): 943-951, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32223138

RESUMO

Monoamine oxidase A (MAO-A) is a promising diagnostic marker for cancer, depression, Parkinson's disease, and liver disease. The fluorescence detection of MAO-A in living animals is of extreme importance for the early diagnosis of related diseases. However, the development of specific and mitochondrial-targeted and near-infrared (NIR) fluorescence MAO-A probes is still inadequate. Here, we designed and synthesized four NIR fluorescence probes containing a dihydroxanthene (DH) skeleton to detect MAO-A in complex biological systems. The specificity of our representative probe DHMP2 displays a 31-fold fluorescence turn-on in vitro, and it can effectively accumulate in the mitochondria and specifically detect the endogenous MAO-A concentrations in PC-3 and SH-SY5Y cell lines. Furthermore, the probe DHMP2 can be used to visualize the endogenous MAO-A activity in zebrafish and tumor-bearing mice. More importantly, it is the first time that the MAO-A activity of hepatic fibrosis tissues is detected through the probe DHMP2. The present study shows that the synthesized DHMP2 might serve as a potential tool for monitoring MAO-A activity in vivo and diagnosing related diseases.


Assuntos
Fibrose/diagnóstico por imagem , Corantes Fluorescentes/uso terapêutico , Cirrose Hepática/diagnóstico por imagem , Monoaminoxidase/metabolismo , Animais , Humanos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA