Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 22(16): 1662-1666, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34181311

RESUMO

The use of organic nanomaterials in biomedical and optical devices has been widely studied. The key to improving the performance and stability of these devices is to control the fabrication process, which determines the phase stability and photophysical properties. In this study, fluorescence changes were observed during the reprecipitation process of mechanofluorochromic molecules of dibenzoyl(methanato)boron difluoride. The cyan-emission phase (C-phase) was first identified. The time evolution of the resolved fluorescence spectra revealed that the green-emission phase (G-phase) was formed from the amorphous phase with yellow emission via the C-phase, in addition to the direct formation of the G-phase. Combined with the results of the investigation into the thermal properties, the fluorescence changes clearly indicate a two-step nucleation process and Ostwald's rule of stages for polymorph transition, which enables us to not only provide guidance for controlling the fabrication process but also propose the ripening process for organic nanoparticle formation.

2.
Photochem Photobiol Sci ; 19(10): 1280-1288, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32748926

RESUMO

Electrostatic interactions between a quaternary pyridyl-ß-diketonate and anionic charged nanosheets were observed to produce a highly emissive dispersion in a rich water solution. A greater fluorescence quantum yield of approximately 50% was obtained when a luminogenic ß-diketonate, 1-(4-methoxyphenyl)-3-(3-hydroxyethyl-pyridinium bromide)-1,3-propandione (prepared by the Claisen condensation reaction and subsequent quaternization), was molecularly dispersed and enclosed by a couple of atomically flat ultrathin (approximately 1.0 nm) silicate sheets of anionic layered clay. By accommodating ß-diketonate into a narrow interlamellar space (approximately 0.4 nm distance), the molecular motion was suppressed, as confirmed by a smaller non-radiative relaxation rate constant, which was obtained by time-resolved luminescence and quantum yield measurements. Because the dense packing of ß-diketonate quenched the excited state, the isolation of luminogens by the co-adsorption of photochemical inert cations (tetramethylammonium and benzylammonium) was prevented by concentration quenching. A lower quantum yield was obtained by expanding the interlayer distance above 1.0 nm by co-adsorbing a photo-inactive water-soluble polymer, poly(vinylpyrrolidone). Therefore, the fixation and spatial separation of ß-diketonate in the narrow interlayer space was determined to be essential for obtaining strong emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA