Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 618(7966): 818-826, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316669

RESUMO

Correct development and maturation of the enteric nervous system (ENS) is critical for survival1. At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood2. Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-ß produced by the ENS; depletion of the ENS and disruption of transforming growth factor-ß signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell-cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche.


Assuntos
Sistema Nervoso Entérico , Intestinos , Macrófagos , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/fisiologia , Intestinos/inervação , Linfotoxina-alfa/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Neurônios/fisiologia , Desmame , Comunicação Celular , Transcriptoma , Fenótipo , Fagocitose , Sinapses , Plasticidade Neuronal , Trânsito Gastrointestinal
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161279

RESUMO

Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell-ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland's stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.


Assuntos
Envelhecimento/patologia , Interleucina-6/metabolismo , Hipófise/patologia , Células-Tronco/patologia , Animais , Proliferação de Células , Inflamação/patologia , Camundongos , Organoides/patologia , Fenótipo , Análise de Célula Única , Transcriptoma/genética , Regulação para Cima/genética
3.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628499

RESUMO

Alveolar soft part sarcoma (ASPS) is a rare subtype of soft tissue sarcoma characterized by an unbalanced translocation, resulting in ASPSCR1-TFE3 fusion that transcriptionally upregulates MET expression. The European Organization for Research and Treatment of Cancer (EORTC) 90101 "CREATE" phase II trial evaluated the MET inhibitor crizotinib in ASPS patients, achieving only limited antitumor activity. We performed a comprehensive molecular analysis of ASPS tissue samples collected in this trial to identify potential biomarkers correlating with treatment outcome. A tissue microarray containing 47 ASPS cases was used for the characterization of the tumor microenvironment using multiplex immunofluorescence. DNA isolated from 34 available tumor samples was analyzed to detect recurrent gene copy number alterations (CNAs) and mutations by low-coverage whole-genome sequencing and whole-exome sequencing. Pathway enrichment analysis was used to identify diseased-associated pathways in ASPS sarcomagenesis. Kaplan-Meier estimates, Cox regression, and the Fisher's exact test were used to correlate histopathological and molecular findings with clinical data related to crizotinib treatment, aiming to identify potential factors associated with patient outcome. Tumor microenvironment characterization showed the presence of PD-L1 and CTLA-4 in 10 and 2 tumors, respectively, and the absence of PD-1 in all specimens. Apart from CD68, other immunological markers were rarely expressed, suggesting a low level of tumor-infiltrating lymphocytes in ASPS. By CNA analysis, we detected a number of broad and focal alterations. The most common alteration was the loss of chromosomal region 1p36.32 in 44% of cases. The loss of chromosomal regions 1p36.32, 1p33, 1p22.2, and 8p was associated with shorter progression-free survival. Using whole-exome sequencing, 13 cancer-associated genes were found to be mutated in at least three cases. Pathway enrichment analysis identified genetic alterations in NOTCH signaling, chromatin organization, and SUMOylation pathways. NOTCH4 intracellular domain dysregulation was associated with poor outcome, while inactivation of the beta-catenin/TCF complex correlated with improved outcome in patients receiving crizotinib. ASPS is characterized by molecular heterogeneity. We identify genetic aberrations potentially predictive of treatment outcome during crizotinib therapy and provide additional insights into the biology of ASPS, paving the way to improve treatment approaches for this extremely rare malignancy.


Assuntos
Sarcoma Alveolar de Partes Moles , Neoplasias de Tecidos Moles , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Crizotinibe/uso terapêutico , Humanos , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/tratamento farmacológico , Sarcoma Alveolar de Partes Moles/genética , Neoplasias de Tecidos Moles/patologia , Translocação Genética , Microambiente Tumoral/genética
4.
Mol Cancer ; 20(1): 136, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670568

RESUMO

BACKGROUND: Renal Cell Carcinoma (RCC) is difficult to treat with 5-year survival rate of 10% in metastatic patients. Main reasons of therapy failure are lack of validated biomarkers and scarce knowledge of the biological processes occurring during RCC progression. Thus, the investigation of mechanisms regulating RCC progression is fundamental to improve RCC therapy. METHODS: In order to identify molecular markers and gene processes involved in the steps of RCC progression, we generated several cell lines of higher aggressiveness by serially passaging mouse renal cancer RENCA cells in mice and, concomitantly, performed functional genomics analysis of the cells. Multiple cell lines depicting the major steps of tumor progression (including primary tumor growth, survival in the blood circulation and metastatic spread) were generated and analyzed by large-scale transcriptome, genome and methylome analyses. Furthermore, we performed clinical correlations of our datasets. Finally we conducted a computational analysis for predicting the time to relapse based on our molecular data. RESULTS: Through in vivo passaging, RENCA cells showed increased aggressiveness by reducing mice survival, enhancing primary tumor growth and lung metastases formation. In addition, transcriptome and methylome analyses showed distinct clustering of the cell lines without genomic variation. Distinct signatures of tumor aggressiveness were revealed and validated in different patient cohorts. In particular, we identified SAA2 and CFB as soluble prognostic and predictive biomarkers of the therapeutic response. Machine learning and mathematical modeling confirmed the importance of CFB and SAA2 together, which had the highest impact on distant metastasis-free survival. From these data sets, a computational model predicting tumor progression and relapse was developed and validated. These results are of great translational significance. CONCLUSION: A combination of experimental and mathematical modeling was able to generate meaningful data for the prediction of the clinical evolution of RCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/metabolismo , Suscetibilidade a Doenças , Neoplasias Renais/etiologia , Neoplasias Renais/metabolismo , Modelos Biológicos , Animais , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Biologia Computacional/métodos , Gerenciamento Clínico , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Ontologia Genética , Genômica/métodos , Xenoenxertos , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/terapia , Camundongos , Prognóstico
5.
Diabetologia ; 63(10): 2235-2248, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32734440

RESUMO

AIMS/HYPOTHESIS: Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness. Despite recent advances, our understanding of its pathophysiology remains incomplete. The aim of this study was to provide deeper insight into the complex network of molecular and cellular changes that underlie diabetic retinopathy by systematically mapping the transcriptional changes that occur in the different cellular compartments of the degenerating diabetic mouse retina. METHODS: Single-cell RNA sequencing was performed on retinal tissue from 12-week-old wild-type and Akimba (Ins2Akita×Vegfa+/-) mice, which are known to replicate features of clinical diabetic retinopathy. This resulted in transcriptome data for 9474 retinal cells, which could be annotated to eight distinct retinal cell types. Using STRING analysis, we studied differentially expressed gene networks in neuronal, glial and immune cell compartments to create a comprehensive view on the pathological changes that occur in the Akimba retina. Using subclustering analysis, we further characterised macroglial and inflammatory cell subpopulations. Prominent findings were confirmed at the protein level using immunohistochemistry, western blotting and ELISA. RESULTS: At 12 weeks, the Akimba retina was found to display degeneration of rod photoreceptors and presence of inflammatory cells, identified by subclustering analysis as monocyte, macrophage and microglial populations. Analysis of differentially expressed genes in the rod, cone, bipolar cell and macroglial compartments indicated changes in cell metabolism and ribosomal gene expression, gliosis, activation of immune system pathways and redox and metal ion dyshomeostasis. Experiments at the protein level supported a metabolic shift from glycolysis to oxidative phosphorylation (glyceraldehyde 3-phosphate dehydrogenase), activation of microglia/macrophages (isolectin-B4), metal ion and oxidative stress response (metallothionein and haem oxygenase-1) and reactive macroglia (glial fibrillary acidic protein and S100) in the Akimba retina, compared with wild-type mice. Our single-cell approach also indicates macroglial subpopulations with distinct fibrotic, inflammatory and gliotic profiles. CONCLUSIONS/INTERPRETATION: Our study identifies molecular pathways underlying inflammatory, metabolic and oxidative stress-mediated changes in the Akimba mouse model of diabetic retinopathy and distinguishes distinct functional subtypes of inflammatory and macroglial cells. DATA AVAILABILITY: RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI ( www.ebi.ac.uk/arrayexpress ) under accession number E-MTAB-9061. Graphical abstract.


Assuntos
Retinopatia Diabética/genética , Perfilação da Expressão Gênica , Retina/metabolismo , Animais , Retinopatia Diabética/metabolismo , Glicólise/genética , Insulina/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/genética , RNA-Seq , Retina/citologia , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Análise de Célula Única , Estresse Fisiológico/genética , Fator A de Crescimento do Endotélio Vascular/genética
6.
Cell Rep ; 41(7): 111639, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384124

RESUMO

T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Análise de Célula Única , Ativação Linfocitária , Diferenciação Celular , Melanoma/metabolismo , Modelos Animais de Doenças
7.
Clin Cancer Res ; 27(11): 3106-3115, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795257

RESUMO

PURPOSE: A randomized phase III study evaluated the efficacy of eribulin versus dacarbazine in patients with advanced liposarcoma and leiomyosarcoma. Improved overall survival (OS) led to approval of eribulin for liposarcoma, but not for leiomyosarcoma. EXPERIMENTAL DESIGN: We explored the molecular profile of 77 archival leiomyosarcoma samples from this trial to identify potential predictive biomarkers, utilizing low-coverage whole-genome and whole-exome sequencing. Tumor molecular profiles were correlated with clinical data, and disease control was defined as complete/partial response or stable disease (RECIST v1.1). RESULTS: Overall, 111 focal copy-number alterations were observed in leiomyosarcoma. Gain of chromosome 17q12 was the most common event, present in 43 of 77 cases (56%). In the eribulin-treated group, gains of 4q26, 20p12.2, 13q13.3, 8q22.2, and 8q13.2 and loss of 1q44 had a negative impact on progression-free survival (PFS), while loss of 2p12 correlated with better prognosis. Gains of 4q22.1 and losses of 3q14.2, 2q14.1, and 11q25 had a negative impact on OS in patients with leiomyosarcoma receiving eribulin. The most commonly mutated genes were TP53 (38%), MUC16 (32%), and ATRX (17%). The presence of ATRX mutations had a negative impact on PFS in both treatment arms; however, the correlation with worse OS was observed only in the eribulin-treated patients. TP53 mutations were associated with longer PFS on eribulin. CONCLUSIONS: Leiomyosarcoma has a complex genetic background, with multiple copy-number alterations and mutations affecting genes implicated in tumorigenesis. We identified several molecular changes with potential impact on survival of patients with leiomyosarcoma when treated with eribulin.


Assuntos
Furanos/uso terapêutico , Cetonas/uso terapêutico , Leiomiossarcoma/tratamento farmacológico , Lipossarcoma/tratamento farmacológico , Adulto , Idoso , Biomarcadores Tumorais , Antígeno Ca-125/genética , Carcinogênese/genética , Cromossomos Humanos Par 17/genética , Variações do Número de Cópias de DNA , Intervalo Livre de Doença , Feminino , Furanos/farmacologia , Humanos , Cetonas/farmacologia , Leiomiossarcoma/diagnóstico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Lipossarcoma/diagnóstico , Lipossarcoma/genética , Lipossarcoma/patologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Prognóstico , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do Genoma , Proteína Nuclear Ligada ao X/genética
8.
Cancers (Basel) ; 13(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885165

RESUMO

Clear cell sarcoma (CCSA) is characterized by a chromosomal translocation leading to EWSR1 rearrangement, resulting in aberrant transcription of multiple genes, including MET. The EORTC 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. We performed an in-depth histopathological and molecular analysis of archival CCSA samples to identify alterations potentially relevant for the treatment outcome. Immunohistochemical characterization of MET signaling was performed using a tissue microarray constructed from 32 CCSA cases. The DNA from 24 available tumor specimens was analyzed by low-coverage whole-genome sequencing and whole-exome sequencing for the detection of recurrent copy number alterations (CNAs) and mutations. A pathway enrichment analysis was performed to identify the pathways relevant for CCSA tumorigenesis. Kaplan-Meier estimates and Fisher's exact test were used to correlate the molecular findings with the clinical features related to crizotinib treatment, aiming to assess a potential association with the outcomes. The histopathological analysis showed the absence of a MET ligand and MET activation, with the presence of MET itself in most of cases. However, the expression/activation of MET downstream molecules was frequently observed, suggesting the role of other receptors in CCSA signal transduction. Using sequencing, we detected a number of CNAs at the chromosomal arm and region levels. The most common alteration was a gain of 8q24.21, observed in 83% of the cases. The loss of chromosomes 9q and 12q24 was associated with shorter survival. Based on exome sequencing, 40 cancer-associated genes were found to be mutated in more than one sample, with SRGAP3 and KMT2D as the most common alterations (each in four cases). The mutated genes encoded proteins were mainly involved in receptor tyrosine kinase signaling, polymerase-II transcription, DNA damage repair, SUMOylation and chromatin organization. Disruption in chromatin organization was correlated with longer progression-free survival in patients receiving crizotinib. Conclusions: The infrequent activation of MET may explain the lack of response to crizotinib observed in the majority of cases in the clinical trial. Our work describes the molecular heterogeneity in CCSA and provides further insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches for CCSA.

9.
Clin Cancer Res ; 27(24): 6737-6748, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34551905

RESUMO

PURPOSE: The European Organization for Research and Treatment of Cancer (EORTC) clinical phase II trial 90101 "CREATE" showed high antitumor activity of crizotinib, an inhibitor of anaplastic lymphoma kinase (ALK)/ROS1, in patients with advanced inflammatory myofibroblastic tumor (IMFT). However, recent findings suggested that other molecular targets in addition to ALK/ROS1 might also contribute to the sensitivity of this kinase inhibitor. We therefore performed an in-depth molecular characterization of archival IMFT tissue, collected from patients enrolled in this trial, with the aim to identify other molecular alterations that could play a role in the response to crizotinib. EXPERIMENTAL DESIGN: Twenty-four archival IMFT samples were used for histopathological assessment and DNA/RNA evaluation to identify gene fusions, copy-number alterations (CNA), and mutations in the tumor tissue. Results were correlated with clinical parameters to assess a potential association between molecular findings and clinical outcomes. RESULTS: We found 12 ALK fusions with 11 different partners in ALK-positive IMFT cases by Archer analysis whereas we did not identify any ROS1-rearranged tumor. One ALK-negative patient responding to crizotinib was found to have an ETV6-NTRK fusion in the tumor specimen. The CNA profile and mutational landscape of IMFT revealed extensive molecular heterogeneity. Loss of chromosome 19 (25% of cases) and PIK3CA mutations (9% of cases) were associated with shorter progression-free survival in patients receiving crizotinib. CONCLUSIONS: We identified multiple genetic alterations in archival IMFT material and provide further insight into the molecular profile of this ultra-rare, heterogeneous malignancy, which may potentially translate into novel treatment approaches for this orphan disease.


Assuntos
Neoplasias Pulmonares , Neoplasias , Ensaios Clínicos Fase II como Assunto , Crizotinibe/uso terapêutico , Rearranjo Gênico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas/genética
10.
Clin Cancer Res ; 27(21): 5979-5992, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426441

RESUMO

PURPOSE: Regorafenib (REG) is approved for the treatment of metastatic colorectal cancer, but has modest survival benefit and associated toxicities. Robust predictive/early response biomarkers to aid patient stratification are outstanding. We have exploited biological pathway analyses in a patient-derived xenograft (PDX) trial to study REG response mechanisms and elucidate putative biomarkers. EXPERIMENTAL DESIGN: Molecularly subtyped PDXs were annotated for REG response. Subtyping was based on gene expression (CMS, consensus molecular subtype) and copy-number alteration (CNA). Baseline tumor vascularization, apoptosis, and proliferation signatures were studied to identify predictive biomarkers within subtypes. Phospho-proteomic analysis was used to identify novel classifiers. Supervised RNA sequencing analysis was performed on PDXs that progressed, or did not progress, following REG treatment. RESULTS: Improved REG response was observed in CMS4, although intra-subtype response was variable. Tumor vascularity did not correlate with outcome. In CMS4 tumors, reduced proliferation and higher sensitivity to apoptosis at baseline correlated with response. Reverse phase protein array (RPPA) analysis revealed 4 phospho-proteomic clusters, one of which was enriched with non-progressor models. A classification decision tree trained on RPPA- and CMS-based assignments discriminated non-progressors from progressors with 92% overall accuracy (97% sensitivity, 67% specificity). Supervised RNA sequencing revealed that higher basal EPHA2 expression is associated with REG resistance. CONCLUSIONS: Subtype classification systems represent canonical "termini a quo" (starting points) to support REG biomarker identification, and provide a platform to identify resistance mechanisms and novel contexts of vulnerability. Incorporating functional characterization of biological systems may optimize the biomarker identification process for multitargeted kinase inhibitors.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Piridinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais , Neoplasias Colorretais/classificação , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Camundongos , Resultado do Tratamento
11.
Nat Genet ; 53(1): 86-99, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414553

RESUMO

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


Assuntos
Variações do Número de Cópias de DNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento do Exoma
12.
Ecol Evol ; 8(1): 732-743, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321909

RESUMO

The ability to detect the incursion of an invasive species or destroy the last individuals during an eradication program are some of the most difficult aspects of invasive species management. The presence of foxes in Tasmania is a contentious issue with recent structured monitoring efforts, involving collection of carnivore scats and testing for fox DNA, failing to detect any evidence of foxes. Understanding the likelihood that monitoring efforts would detect fox presence, given at least one is present, is therefore critical for understanding the role of scat monitoring for informing the response to an incursion. We undertook trials to estimate the probability of fox scat detection through monitoring by scat-detector dogs and person searches and used this information to critically evaluate the power of scat monitoring efforts for detecting foxes in the Tasmanian landscape. The probability of detecting a single scat present in a 1-km2 survey unit was highest for scat-detector dogs searches (0.053) compared with person searches (x¯â‰…0.015) for each 10 km of search effort. Simulation of the power of recent scat monitoring efforts undertaken in Tasmania from 2011 to 2015 suggested that single foxes would have to be present in at least 20 different locations or fox breeding groups present in at least six different locations, in order to be detected with a high level of confidence (>0.80). We have shown that highly structured detection trials can provide managers with the quantitative tools needed to make judgments about the power of large-scale scat monitoring programs. Results suggest that a fox population, if present in Tasmania, could remain undetected by a large-scale, structured scat monitoring program. Therefore, it is likely that other forms of surveillance, in conjunction with scat monitoring, will be necessary to demonstrate that foxes are absent from Tasmania with high confidence.

13.
Gigascience ; 6(8): 1-13, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810700

RESUMO

Identification of species from trace samples is now possible through the comparison of diagnostic DNA fragments against reference DNA sequence databases. DNA detection of animals from non-invasive samples, such as predator faeces (scats) that contain traces of DNA from their species of origin, has proved to be a valuable tool for the management of elusive wildlife. However, application of this approach can be limited by the availability of appropriate genetic markers. Scat DNA is often degraded, meaning that longer DNA sequences, including standard DNA barcoding markers, are difficult to recover. Instead, targeted short diagnostic markers are required to serve as diagnostic mini-barcodes. The mitochondrial genome is a useful source of such trace DNA markers because it provides good resolution at the species level and occurs in high copy numbers per cell. We developed a mini-barcode based on a short (178 bp) fragment of the conserved 12S ribosomal ribonucleic acid mitochondrial gene sequence, with the goal of discriminating amongst the scats of large mammalian predators of Australia. We tested the sensitivity and specificity of our primers and can accurately detect and discriminate amongst quolls, cats, dogs, foxes, and devils from trace DNA samples. Our approach provides a cost-effective, time-efficient, and non-invasive tool that enables identification of all 8 medium-large mammal predators in Australia, including native and introduced species, using a single test. With modification, this approach is likely to be of broad applicability elsewhere.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Marcadores Genéticos , Mamíferos/genética , Animais , Austrália , Biologia Computacional/métodos , Primers do DNA , RNA Ribossômico , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA