Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Anal Bioanal Chem ; 415(15): 2921-2936, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071143

RESUMO

The total mass of individual synthetic polymers present as microplastic (MP < 2 mm) pollutants in the sediments of interconnected aquatic environments was determined adopting the Polymer Identification and Specific Analysis (PISA) procedure. The investigated area includes a coastal lakebed (Massaciuccoli), a coastal seabed (Serchio River estuarine), and a sandy beach (Lecciona), all within a natural park area in Tuscany (Italy). Polyolefins, poly(styrene) (PS), poly(vinyl chloride) (PVC), polycarbonate (PC), poly(ethylene terephthalate) (PET), and the polyamides poly(caprolactame) (Nylon 6) and poly(hexamethylene adipamide) (Nylon 6,6) were fractionated and quantified through a sequence of selective solvent extractions followed by either analytical pyrolysis or reversed-phase HPLC analysis of the products of hydrolytic depolymerizations under acidic and alkaline conditions. The highest concentrations of polyolefins (highly degraded, up to 864 µg/kg of dry sediment) and PS (up to 1138 µg/kg) MPs were found in the beach dune sector, where larger plastic debris are not removed by the cyclic swash action and are thus prone to further aging and fragmentation. Surprisingly, low concentrations of less degraded polyolefins (around 30 µg/kg) were found throughout the transect zones of the beach. Positive correlation was found between polar polymers (PVC, PC) and phthalates, most likely absorbed from polluted environments. PET and nylons above their respective LOQ values were found in the lakebed and estuarine seabed hot spots. The pollution levels suggest a significant contribution from riverine and canalized surface waters collecting urban (treated) wastewaters and waters from Serchio River and the much larger Arno River aquifers, characterized by a high anthropogenic pressure.

2.
Mass Spectrom Rev ; 40(4): 381-407, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643188

RESUMO

Lipid characterization in art and archeology, together with the study of lipid degradation processes, is an important research area in heritage science. Lipid-based materials have been used as food since ancient times, but also employed as illuminants and as ingredients in cosmetic, ritual, and pharmaceutical preparations. Both animal and plant lipids have also been processed to produce materials used in art and crafts, such as paint binders, varnishes, waterproofing agents, and coatings. Identifying the origin of the lipid materials is challenging when they are found in association with artistic historical objects. This is due to the inherent complex composition of lipids, their widespread occurrence, and the chemical alterations induced by ageing. The most common approach for lipid characterization in heritage objects entails profiling fatty acids by gas chromatography/mass spectrometry after saponification or transesterification. New developments in high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) for the characterization of acylglycerols, together with more efficient sample treatments, have fostered the introduction of liquid chromatography for characterizing the lipid profile in heritage objects. This review reports the latest developments and applications of HPLC-MS for the characterization of lipid materials in the field of heritage science. We describe the various approaches for sample pretreatment and highlight the advantages and limitations of HPLC-MS in the analysis of paint and archeological samples. © 2020 John Wiley & Sons Ltd.

3.
EMBO Rep ; 21(11): e50078, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32909687

RESUMO

The dynamic interplay between cancer cells and cancer-associated fibroblasts (CAFs) is regulated by multiple signaling pathways, which can lead to cancer progression and therapy resistance. We have previously demonstrated that hMENA, a member of the actin regulatory protein of Ena/VASP family, and its tissue-specific isoforms influence a number of intracellular signaling pathways related to cancer progression. Here, we report a novel function of hMENA/hMENAΔv6 isoforms in tumor-promoting CAFs and in the modulation of pro-tumoral cancer cell/CAF crosstalk via GAS6/AXL axis regulation. LC-MS/MS proteomic analysis reveals that CAFs that overexpress hMENAΔv6 secrete the AXL ligand GAS6, favoring the invasiveness of AXL-expressing pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC) cells. Reciprocally, hMENA/hMENAΔv6 regulates AXL expression in tumor cells, thus sustaining GAS6-AXL axis, reported as crucial in EMT, immune evasion, and drug resistance. Clinically, we found that a high hMENA/GAS6/AXL gene expression signature is associated with a poor prognosis in PDAC and NSCLC. We propose that hMENA contributes to cancer progression through paracrine tumor-stroma crosstalk, with far-reaching prognostic and therapeutic implications for NSCLC and PDAC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Pancreáticas , Actinas , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Neoplasias Pulmonares/genética , Proteínas dos Microfilamentos , Neoplasias Pancreáticas/genética , Proteômica , Células Estromais , Espectrometria de Massas em Tandem
4.
Proc Natl Acad Sci U S A ; 115(12): 3132-3137, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29439204

RESUMO

Aberrant activation of endothelin-1 receptors (ET-1R) elicits pleiotropic effects relevant for tumor progression. The network activated by this receptor might be finely, spatially, and temporarily orchestrated by ß-arrestin1 (ß-arr1)-driven interactome. Here, we identify hMENA, a member of the actin-regulatory protein ENA/VASP family, as an interacting partner of ß-arr1, necessary for invadopodial function downstream of ET-1R in serous ovarian cancer (SOC) progression. ET-1R activation by ET-1 up-regulates expression of hMENA/hMENAΔv6 isoforms through ß-arr1, restricted to mesenchymal-like invasive SOC cells. The interaction of ß-arr1 with hMENA/hMENAΔv6 triggered by ET-1 leads to activation of RhoC and cortactin, recruitment of membrane type 1-matrix metalloprotease, and invadopodia maturation, thereby enhancing cell plasticity, transendothelial migration, and the resulting spread of invasive cells. The treatment with the ET-1R antagonist macitentan impairs the interaction of ß-arr1 with hMENA and inhibits invadopodial maturation and tumor dissemination in SOC orthotopic xenografts. Finally, high ETAR/hMENA/ß-arr1 gene expression signature is associated with a poor prognosis in SOC patients. These data define a pivotal function of hMENA/hMENAΔv6 for ET-1/ß-arr1-induced invadopodial activity and ovarian cancer progression.


Assuntos
Cistadenocarcinoma Seroso/patologia , Endotelina-1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias Ovarianas/patologia , beta-Arrestina 1/metabolismo , Animais , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidade , Citoesqueleto/metabolismo , Antagonistas do Receptor de Endotelina A/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Proteínas dos Microfilamentos/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Podossomos/efeitos dos fármacos , Podossomos/metabolismo , Pirimidinas/farmacologia , Receptor de Endotelina A/metabolismo , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína de Ligação a GTP rhoC/metabolismo
5.
Molecules ; 25(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276409

RESUMO

The first synthetic polymers were introduced as constituents of everyday life, design objects, and artworks at the end of the 19th century. Since then, the history of design has been strictly connected with the 20th century evolution of plastic materials. Objects of design from the 20th century are today a precious part of the cultural heritage. They raise specific conservation issues due to the degradation processes affecting synthetic polymer-based plastics. Museums and collections dealing with the conservation of design objects and modern materials need to base their conservation strategies on compositional data that reveal the formulations of historical plastics and their decay processes. Specific and specifically optimized analytical tools are thus needed. We employed flash analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS) and evolved gas analysis coupled with mass spectrometry (EGA-MS) to characterize "historic polymeric materials" (HIPOMS) and heritage plastics at the molecular level with high chemical detail. This approach complements non-invasive spectroscopic diagnosis whenever it fails to obtain significant or complete information on the nature and the state of preservation of the materials under study. We determined the composition of several 20th century design objects (1954-1994) from the Triennale Design Museum of Milan (Triennale Milano - Museo del Design Italiano), which for different morphological, chemical, or physical reasons were unsuitable for characterization by non-invasive spectroscopy. EGA-MS proved capable for the study of the different fractions constituting heterogeneous micro-samples and for gaining an insight into their degradation processes from the contextual interpretation of thermal and mass-spectrometric data.


Assuntos
Plásticos/química , Pirólise , Cor , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/química , Propriedades de Superfície
6.
Environ Sci Technol ; 52(10): 5634-5643, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29681150

RESUMO

The environmental pollution by plastic debris directly dispersed in or eventually reaching marine habitats is raising increasing concern not only for the vulnerability of marine species to ingestion and entanglement by macroscopic debris, but also for the potential hazards from smaller fragments down to a few micrometer size, often referred to as "microplastics". A novel procedure for the selective quantitative and qualitative determination of organic solvent soluble microplastics and microplastics degradation products (<2 mm) in shoreline sediments was adopted to evaluate their concentration and distribution over the different sectors of a Tuscany (Italy) beach. Solvent extraction followed by gravimetric determination and chemical characterization by FT-IR, Pyrolysis-GC-MS, GPC and 1H NMR analyses showed the presence of up to 30 mg microplastics in 1 kg sand, a figure corresponding to about 5.5 g of generally undetected and largely underestimated microplastics in the upper 10 cm layer of a square meter of sandy beach ! The extracted microplastic material was essentially polystyrene and polyolefin byproducts from oxidative degradation and erosion of larger fragments, with accumulation mainly above the storm berm. Chain scission and oxidation processes cause significant variations in the physical and chemical features of microplastics, promoting their adsorption onto sand particles and thus their persistence in the sediments.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Itália , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Angew Chem Int Ed Engl ; 57(25): 7313-7323, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29521446

RESUMO

The molecular characterization of organic materials in samples from artworks and historical objects traditionally entailed qualitative and quantitative analyses by HPLC and GC. Today innovative approaches based on analytical pyrolysis enable samples to be analysed without any chemical pre-treatment. Pyrolysis, which is often considered as a screening technique, shows previously unexplored potential thanks to recent instrumental developments. Organic materials that are macromolecular in nature, or undergo polymerization upon curing and ageing can now be better investigated. Most constituents of paint layers and archaeological organic substances contain major insoluble and chemically non-hydrolysable fractions that are inaccessible to GC or HPLC. To date, molecular scientific investigations of the organic constituents of artworks and historical objects have mostly focused on the minor constituents of the sample. This review presents recent advances in the qualitative and semi-quantitative analyses of organic materials in heritage objects based on analytical pyrolysis coupled with mass spectrometry.

8.
Anal Bioanal Chem ; 409(17): 4233-4245, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28484806

RESUMO

Wood artefacts undergo complex alteration and degradation during ageing, and gaining information on the chemical composition of wood in archaeological artefacts is fundamental to plan conservation strategies. In this work, an integrated analytical approach based on innovative NMR spectroscopy procedures, gel permeation chromatography and analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC-MS) was applied for the first time on archaeological wood from the Oseberg collection (Norway), in order to evaluate the chemical state of preservation of the wood components, without separating them. We adopted ionic liquids (ILs) as non-derivatising solvents, thus obtaining an efficient dissolution of the wood, allowing us to overcome the difficulty of dissolving wood in its native form in conventional molecular solvents. Highly substituted lignocellulosic esters were therefore obtained under mild conditions by reacting the solubilised wood with either acetyl chloride or benzoyl chloride. A phosphytilation reaction was also performed using 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan. As a result, the functionalised wood developed an enhanced solubility in molecular solvents, thus enabling information about modifications of lignin, depolymerisation of cellulose and structure of lignin-carbohydrate complexes to be obtained by means of spectroscopic (2D-HSQC-NMR and 31P-NMR) and chromatographic (gel permeation chromatography) techniques. Py-GC-MS was used to investigate the degradation undergone by the lignocellulosic components on the basis of their pyrolysis products, without any pre-treatment of the samples. The application of all these combined techniques enabled a comprehensive characterisation of the whole cell wall of archaeological wood and the evaluation of its state of preservation. High depletion of carbohydrates and high extent of lignin oxidation were highlighted in the alum-treated objects, whereas a good preservation state was found for the untreated wood of the Oseberg ship. Graphical abstract ᅟ.


Assuntos
Arqueologia/métodos , Parede Celular/química , Fósseis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Células Vegetais/química , Madeira/química , Celulose/análise , Cromatografia em Gel/métodos , Fósseis/história , História Antiga , Líquidos Iônicos/química , Lignina/análise , Solubilidade
9.
Rapid Commun Mass Spectrom ; 29(3): 225-37, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26411620

RESUMO

RATIONALE: Alkyd resins are synthetic polyesters used as paints and coatings. Current approaches for their analysis do not allow the characterization of pentaerythritol and phthalic acid esters, whose detection is interesting to fully characterize the materials, e.g. for forensic or cultural heritage applications. METHODS: A combined analytical approach based on Gas Chromatography/Mass Spectrometry (GC/MS), High-Performance Liquid Chromatography (HPLC)/MS and flow injection analysis (FIA)/MS was adopted. GC/MS was used to characterize the fatty acid profile and the polybasic acids in extracts from industrial alkyd resins. HPLC/MS and FIA/MS were used for the characterization of the triglyceride profile of the oil used to manufacture the resin and for the identification of reaction products deriving from the synthesis process. RESULTS: The multi-analytical approach was applied on two different industrial alkyd resins produced from two different oils. The GC/MS analysis was successful in characterizing the fatty acid profile and the aromatic fraction of the resin. The HPLC/MS analysis allowed us to characterize the pentaerythritol and phthalic acid ester and the triglycerides residues from the synthesis process, by studying their high-resolution tandem mass spectra. CONCLUSIONS: The application of liquid chromatography coupled with high-resolution tandem mass spectrometry to the study of industrial alkyd resins allowed us to characterize for the first time the esters formed by the transesterification reactions involving pentaerythritol, phthalic acid and triglycerides.


Assuntos
Ésteres/química , Ácidos Ftálicos/química , Propilenoglicóis/química , Resinas Sintéticas/química , Cromatografia Líquida de Alta Pressão/métodos , Esterificação , Análise de Injeção de Fluxo/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
10.
Proc Natl Acad Sci U S A ; 109(47): 19280-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129656

RESUMO

Human mena (hMENA), a member of the actin cytoskeleton regulators Ena/VASP, is overexpressed in high-risk preneoplastic lesions and in primary breast tumors and has been identified as playing a role in invasiveness and poor prognosis in breast cancers that express HER2. Here we identify a unique isoform, hMENAΔv6, derived from the hMENA alternative splicing program. In an isogenic model of human breast cancer progression, we show that hMENA(11a) is expressed in premalignant cells, whereas hMENAΔv6 expression is restricted to invasive cancer cells. "Reversion" of the malignant phenotype leads to concurrent down-regulation of all hMENA isoforms. In breast cancer cell lines, isoform-specific hMENA overexpression or knockdown revealed that in the absence of hMENA(11a), overexpression of hMENAΔv6 increased cell invasion, whereas overexpression of hMENA(11a) reduced the migratory and invasive ability of these cells. hMENA(11a) splicing was shown to be dependent on the epithelial regulator of splicing 1 (ESRP1), and forced expression of ESRP1 in invasive mesenchymal breast cancer cells caused a phenotypic switch reminiscent of a mesenchymal-to-epithelial transition (MET) characterized by changes in the cytoskeletal architecture, reexpression of hMENA(11a), and a reduction in cell invasion. hMENA-positive primary breast tumors, which are hMENA(11a)-negative, are more frequently E-cadherin low in comparison with tumors expressing hMENA(11a). These data suggest that polarized and growth-arrested cellular architecture correlates with absence of alternative hMENA isoform expression, and that the hMENA splicing program is relevant to malignant progression in invasive disease.


Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mesoderma/patologia , Proteínas dos Microfilamentos/genética , Citoesqueleto de Actina/metabolismo , Antígenos CD , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Clonagem Molecular , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Mesoderma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Invasividade Neoplásica , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transfecção , Vimentina/metabolismo
11.
Breast Cancer Res ; 16(5): 459, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25606594

RESUMO

Following a highly dynamic and complex dialogue between the epithelium and the surrounding microenvironment, the mammary gland develops into a branching structure during puberty, buds during pregnancy, forms intricate polar acini during lactation and, once the babies are weaned, remodels and involutes. At every stage of menstrual and pregnancy cycles, interactions between the cells and the extracellular matrix (ECM) and homotypic and heterotypic cell­cell interactions give rise to the architecture and function of the gland at that junction. These orchestrated programs would not be possible without the important role of the ECM receptors, integrins being the prime examples. The ECM­integrin axis regulates many crucial cellular functions including survival, migration and quiescence; the imbalance in any of these processes could contribute to oncogenesis. In this review we spotlight the involvement of two prominent integrin subunits, ß1 and ß4 integrins, in cross-talk with tyrosine kinase receptors, and we discuss the roles of these integrin subunits in the biology of normal breast differentiation and as potential prognostic and therapeutic targets in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Integrina beta1/fisiologia , Integrina beta4/fisiologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Adesão Celular , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo
12.
Sci Total Environ ; 932: 173031, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723961

RESUMO

The widespread extensive use of synthetic polymers has led to a substantial environmental crisis caused by plastic pollution, with microplastics detected in various environments and posing risks to both human health and ecosystems. The possibility of plastic fragments to be dispersed in the air as particles and inhaled by humans may cause damage to the respiratory and other body systems. Therefore, there is a particular need to study microplastics as air pollutants. In this study, we tested a combination of analytical pyrolysis, gas chromatography-mass spectrometry, and gas and liquid chromatography-mass spectrometry to identify and quantify both microplastics and their additives in airborne particulate matter and settled dust within a workplace environment: a WEEE treatment plant. Using this combined approach, we were able to accurately quantify ten synthetic polymers and eight classes of polymer additives. The identified additives include phthalates, adipates, citrates, sebacates, trimellitates, benzoates, organophosphates, and newly developed brominated flame retardants.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Microplásticos , Material Particulado , Plásticos , Polímeros , Microplásticos/análise , Polímeros/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Poluentes Atmosféricos/análise , Plásticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Retardadores de Chama/análise , Poeira/análise
13.
Chemosphere ; 349: 140872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056715

RESUMO

In this study, the sources, abundance, and ecological implications of microplastic (MP) pollution in Volturno, one of the main rivers in southern Italy, were explored by investigating the MP concentration levels in sediments collected along the watercourse. The samples were sieved through 5- and 2-mm sieves and treated with selective organic solvents. The polymer classes polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), nylon 6 (PA6), and nylon 6,6 (PA66) were quantified using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and high-performance liquid chromatography (HPLC). Furthermore, a 16S rRNA metagenomic analysis was performed using next-generation sequencing in Ion Torrent™ to explore the bacterial taxonomy and ecological dynamics of sediment samples. The MPs were detected in all samples collected from the study area. PP and PET were the most abundant and frequently detected polymer types in the analysed samples. The total MP concentration ranged from 1.05 to 14.55 ppm (parts per million), identifying two distinct data populations: high- and low-MP-contaminated sediments. According to the Polymer Hazard Index (PHI), MP pollution was categorised as hazard levels III and IV (corresponding to the danger category). Metagenomic data revealed that the presence of MPs significantly affected the abundance of bacterial taxa; Flavobacteraceae and Nocardiaceae, which are known to degrade polymeric substances, were present in high-MP-contaminated sediments. This study provides new insights into the ecological relevance of MP pollution and suggests that microorganisms may serve as biomarkers of MP pollution.


Assuntos
Microbiota , Poluentes Químicos da Água , Microplásticos , Plásticos , Ecossistema , RNA Ribossômico 16S , Polímeros , Itália , Monitoramento Ambiental , Sedimentos Geológicos
14.
EBioMedicine ; 101: 105003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340557

RESUMO

BACKGROUND: Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS: Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS: Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTßR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTßR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTßR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION: This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING: This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibronectinas , Inibidores de Checkpoint Imunológico , Proteínas dos Microfilamentos/metabolismo , Linhagem Celular Tumoral , Isoformas de Proteínas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Microambiente Tumoral
15.
J Exp Clin Cancer Res ; 42(1): 347, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124183

RESUMO

In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibroblastos/metabolismo , Neoplasias/patologia , Fenótipo , Microambiente Tumoral/genética
16.
Polymers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571161

RESUMO

Acrylonitrile butadiene styrene (ABS) is a thermoplastic polymer widely used in several everyday life applications; moreover, it is also one of the most employed plastics in contemporary artworks and design objects. In this study, the chemical and thermal properties of an ABS-based polymer and its photo-degradation process were investigated through a multi-analytical approach based on thermal, mass spectrometric and spectroscopic techniques. LEGO® building blocks were selected for studying the ABS properties. First, the composition of unaged LEGO® bricks was determined in terms of polymer composition and thermal stability; then, the bricks were subjected to UV-Vis photo-oxidative-accelerated ageing for evaluation of possible degradation processes. The modifications of the chemical and thermal properties were monitored in time by a multi-technique approach aimed at improving the current knowledge of ABS photodegradation, employing pyrolysis online with gas chromatography and evolved gas analysis, coupled with mass spectrometric detection (Py-GC-MS and EGA-MS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and corroborated by external reflection FT-IR spectroscopy. The multimodal approach provided new evidence on the two-step degradation pathway proposed for ABS, defining molecular markers for polybutadiene oxidation and styrene-acrylonitrile depolymerization. Moreover, the results highlighted the feasibility of correlating accurate compositional and thermal data acquired by bulk techniques with external reflection FT-IR spectroscopy as a non-invasive portable tool to monitor the state of conservation of plastic museum objects in-situ.

17.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177259

RESUMO

Among the innovative materials used by 20th-century artists, polyurethane (PUR) has been shown to be highly unstable, and therefore artworks made of it are now in need of careful conservation strategies. This study presents a multi-analytical investigation of PUR foam scenic objects originally made between the 1960s and 1970s during the Italian Arte Viva movement. The main components in the foam and additives were characterized through micro attenuated total reflectance infrared spectroscopy (µ-ATR-FTIR) and pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Painted samples were further investigated through µ-FTIR and Raman spectroscopy to define binders and pigments. The use of µ-ATR-FTIR in combination with evolved gas analysis-mass spectrometry (EGA-MS) allowed the variable conditions of the artworks to be assessed and attained some insights into the chemical processes responsible for aging. At the same time, morphological changes due to the degradation phenomena were recorded through optical (OM) and scanning electron microscopy (SEM). The detailed characterization of the PUR foam and painting materials was helpful in attaining some insights into harmful environmental parameters for the artworks, thus informing preventive conservation.

18.
Sci Rep ; 13(1): 12170, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500707

RESUMO

From the Pioneer Era of the aviation to World War I the evolution of aircraft technology and chemical synthesis enabled a unique coexistence of traditional craftsmanship, artistic decoration practices, and technological advancements. The study of the materials used in these early years of aviation is still an uncharted territory: a vast portion of remaining planes has been partially or completely repaired and restored, usually by total replacement of the fabric. The Italian biplane Ansaldo A.1 (1918) is a fighter aircraft and is one of the few planes in the world that still preserves its own original materials. In the last years, the fabric sections of the airplane have started to become brittle and loose cohesion, severely compromising the integrity of the aircraft, and resulting in a general alteration of the pictorial layers of the painted sections. A chemical investigation was undertaken to unveil the materials, and to elucidate the causes of the degradation. This study presents one of the first steps into the study of early historical aircrafts, defining the background for the conservation plans to preserve these objects for future generations.

19.
J Exp Clin Cancer Res ; 42(1): 317, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008717

RESUMO

BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.


Assuntos
Melanoma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Nestina/genética , Nestina/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
20.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37612043

RESUMO

BACKGROUND: Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS: Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS: Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNß via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS: Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA