Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Microbiol Infect Dis ; 37(12): 2301-2306, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238343

RESUMO

Yersiniosis is a foodborne infection caused by Yersinia enterocolitica or Yersinia pseudotuberculosis. Although yersiniosis is most often self-limiting, some patients develop chronic infections, such as reactive arthritis, glomerulonephritis, or myocarditis, which require an antibiotic treatment. Whereas early infections can be diagnosed by direct detection of bacteria, chronic infections can only be identified by serological tests. At this point, a serological method for differentiation between infections with the two Yersinia species is important since antibiotic susceptibility of these bacteria is different. Traditional immunoassays do not distinguish between infections with Y. enterocolitica and Y. pseudotuberculosis. The only test that allows for this differentiation is Mikrogen's strip test where discrimination between the two types of infection is based on two recombinant bacterial proteins, MyfA and PsaA (specific for Y. enterocolitica and Y. pseudotuberculosis, respectively). Here, we show that Y. enterocolitica and Y. pseudotuberculosis, cultured under the conditions that mimic the natural rout of infection, express surface antigens different from MyfA and PsaA that can also be used in a discrimination test. Further, we describe a new ELISA that is based on the whole bacteria and recombinant MyfA and PsaA as antigens, and that allows the differentiation between infections with Y. enterocolitica and Y. pseudotuberculosis and simultaneous detection of yersiniosis.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Yersiniose/diagnóstico , Yersinia enterocolitica/isolamento & purificação , Infecções por Yersinia pseudotuberculosis/diagnóstico , Yersinia pseudotuberculosis/isolamento & purificação , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Doença Crônica , Diagnóstico Diferencial , Escherichia coli , Humanos , Proteínas Recombinantes/imunologia , Yersiniose/sangue , Infecções por Yersinia pseudotuberculosis/sangue
2.
Thromb Haemost ; 115(5): 1001-9, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26791370

RESUMO

Wound healing is a complicated biological process that consist of partially overlapping inflammatory, proliferation and tissue remodelling phases. A successful wound healing depends on a proper activation and subsequent termination of the inflammatory phase. The failure to terminate the inflammation halts the completion of wound healing and is a known reason for formation of chronic wounds. Previous studies have shown that wound closure is delayed in plasminogen-deficient mice, and a role for plasminogen in dissection of extracellular matrix was suggested. However, our finding that plasminogen is transported to the wound by inflammatory cells early during the healing process, where it potentiates inflammation, indicates that plasminogen may also have other roles in the wound healing process. Here we report that plasminogen-deficient mice have extensive fibrin and neutrophil depositions in the wounded area long after re-epithelialisation, indicating inefficient debridement and chronic inflammation. Delayed formation of granulation tissue suggests that fibroblast function is impaired in the absence of plasminogen. Therefore, in addition to its role in the activation of inflammation, plasminogen is also crucial for subsequent steps, including resolution of inflammation and activation of the proliferation phase. Importantly, supplementation of plasminogen-deficient mice with human plasminogen leads to a restored healing process that is comparable to that in wild-type mice. Besides of being an activator of the inflammatory phase during wound healing, plasminogen is also required for the subsequent termination of inflammation. Based on these results, we propose that plasminogen may be an important future therapeutic agent for wound treatment.


Assuntos
Plasminogênio/fisiologia , Fenômenos Fisiológicos da Pele , Cicatrização/fisiologia , Animais , Queimaduras/patologia , Queimaduras/fisiopatologia , Fibrinogênio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Neutrófilos/patologia , Plasminogênio/deficiência , Plasminogênio/genética , Pele/lesões , Pele/patologia , Pele/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA