Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 21(1): 75, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539202

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Proteínas Virais/genética , Filogenia , Genômica , Surtos de Doenças
2.
Chem Rev ; 122(3): 3879-3965, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34968051

RESUMO

Photocatalysis is a perennial solution that promises to resolve deep-rooted challenges related to environmental pollution and energy deficit through harvesting the inexhaustible and renewable solar energy. To date, a cornucopia of photocatalytic materials has been investigated with the research wave presently steered by the development of novel, affordable, and effective metal-free semiconductors with fascinating physicochemical and semiconducting characteristics. Coincidentally, the recently emerged red phosphorus (RP) semiconductor finds itself fitting perfectly into this category ascribed to its earth abundant, low-cost, and metal-free nature. More notably, the renowned red allotrope of the phosphorus family is spectacularly bestowed with strengthened optical absorption features, propitious electronic band configuration, and ease of functionalization and modification as well as high stability. Comprehensively detailing RP's roles and implications in photocatalysis, this review article will first include information on different RP allotropes and their chemical structures, followed by the meticulous scrutiny of their physicochemical and semiconducting properties such as electronic band structure, optical absorption features, and charge carrier dynamics. Besides that, state-of-the-art synthesis strategies for developing various RP allotropes and RP-based photocatalytic systems will also be outlined. In addition, modification or functionalization of RP with other semiconductors for promoting effective photocatalytic applications will be discussed to assess its versatility and feasibility as a high-performing photocatalytic system. Lastly, the challenges facing RP photocatalysts and future research directions will be included to propel the feasible development of RP-based systems with considerably augmented photocatalytic efficiency. This review article aspires to facilitate the rational development of multifunctional RP-based photocatalytic systems by widening the cognizance of rational engineering as well as to fine-tune the electronic, optical, and charge carrier properties of RP.


Assuntos
Recuperação e Remediação Ambiental , Energia Solar , Catálise , Fósforo , Semicondutores
3.
Phys Chem Chem Phys ; 24(18): 11124-11130, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35474006

RESUMO

Surface defect engineering on the nanoscale has attracted extensive research attention lately; however, its role in modulating the properties and catalytic performance of a semiconducting material has not been comprehensively covered. Here, we systematically unraveled the effect of defect engineering towards textural, electronic and optical properties of graphitic carbon nitride (g-C3N4), as well as its photocatalytic mechanism of CO2 reduction using first-principle calculations by density functional theory through the introduction of various defect sites. Among the five unique atoms in g-C3N4, the vacancy site was found to be the most feasible at the two-coordinated nitrogen, N2. By initiating N2 point defects, an asymmetric electron density distribution was engendered around the vacancy region, which resulted in an evolution of semiconducting properties. We also discovered an improved charge separation efficiency and CO2 adsorption affinity in g-C3N4, which rendered a more thermodynamically feasible pathway for CO2 reduction to CO, CH3OH and CH4 fuels. This theoretical finding is hoped to shed light on the importance of the defect engineering strategy towards photocatalytic enhancement in g-C3N4.

4.
Environ Res ; 212(Pt C): 113394, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35537501

RESUMO

The co-existence of organic contaminants and heavy metals including 4-chlorophenol (4-CP) and Cr(VI) in aquatic system have become a challenging task in the wastewater treatment. Herein, the synchronous photocatalytic decomposition of 4-CP and Cr(VI) over new Z-scheme CoFe2O4/P-BiOBr heterojunction nanocomposites were revealed. In this work, the nanocomposites were successfully developed via a surfactant-free hydrothermal method. The heterojunction interface was created by decorating magnetic CoFe2O4 nanoparticles onto P-BiOBr nanosheets. The as-fabricated CoFe2O4/P-BiOBr nanocomposites substantially improved the synchronous decomposition of 4-CP and Cr(VI) compared to the single-phase component samples under visible light irradiation. Particularly, the 30-CoFe2O4/P-BiOBr nanocomposite displayed the best photocatalytic performance, which decomposed 95.6% 4-CP and 100% Cr(VI) within 75 min. The photocatalytic improvement was assigned to the Z-scheme heterojunction assisted charge migration between CoFe2O4 and P-BiOBr, and the acceleration of charge carrier separation was validated by the findings of charge dynamics measurements. The harmful 4-CP was photodegraded into smaller organics whereas the Cr(VI) was photoreduced into Cr(III) after 30-CoFe2O4/P-BiOBr photocatalysis, and the good recyclability of fabricated nanocomposite in photocatalytic reaction also showed promising potential for practical applications in environmental remediation. Finally, the radical quenching tests confirmed that there existed the Z-scheme path of charge migration in CoFe2O4/P-BiOBr nanocomposite, which was the mechanism responsible for its high photoactivity.

5.
Small ; 17(48): e2006851, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909946

RESUMO

Graphitic carbon nitride (g-C3 N4 ) is a kind of ideal metal-free photocatalysts for artificial photosynthesis. At present, pristine g-C3 N4 suffers from small specific surface area, poor light absorption at longer wavelengths, low charge migration rate, and a high recombination rate of photogenerated electron-hole pairs, which significantly limit its performance. Among a myriad of modification strategies, point-defect engineering, namely tunable vacancies and dopant introduction, is capable of harnessing the superb structural, textural, optical, and electronic properties of g-C3 N4 to acquire an ameliorated photocatalytic activity. In view of the burgeoning development in this pacey field, a timely review on the state-of-the-art advancement of point-defect engineering of g-C3 N4 is of vital significance to advance the solar energy conversion. Particularly, insights into the intriguing roles of point defects, the synthesis, characterizations, and the systematic control of point defects, as well as the versatile application of defective g-C3 N4 -based nanomaterials toward photocatalytic water splitting, carbon dioxide reduction and nitrogen fixation will be presented in detail. Lastly, this review will conclude with a balanced perspective on the technical and scientific hindrances and future prospects. Overall, it is envisioned that this review will open a new frontier to uncover novel functionalities of defective g-C3 N4 -based nanostructures in energy catalysis.


Assuntos
Grafite , Catálise , Compostos de Nitrogênio , Fotossíntese
6.
Chemistry ; 26(44): 9710-9748, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511824

RESUMO

Photocatalytic CO2 reduction is a revolutionary approach to solve imminent energy and environmental issues by replicating the ingenuity of nature. The past decade has witnessed an impetus in the rise of two-dimensional (2D) structure materials as advanced nanomaterials to boost photocatalytic activities. In particular, the use of 2D carbon-based materials is deemed as highly favorable, not only as a green material choice, but also due to their exceptional physicochemical and electrical properties. This Review article presents a diverse range of alterations and compositions derived from 2D carbon-based nanomaterials, mainly graphene and graphitic carbon nitride (g-C3 N4 ), which have remarkably ameliorated the photocatalytic CO2 performance. Herein, the rational design of the photocatalyst systems with consideration of the aspect of dimensionality and the resultant heterostructures at the interface are systematically analyzed to elucidate an insightful perspective on this pacey subject. Finally, a conclusion and outlook on the limitations and prospects of the cutting-edge research field are highlighted.

7.
Environ Res ; 188: 109828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798947

RESUMO

This study aims to produce hydrochar from high-ash low-lipid Chlorella vulgaris biomass via hydrothermal carbonization (HTC) process. The effects of hydrothermal temperature and retention time with respect to the physicochemical properties of hydrochar were studied in the range of 180-250 °C and 0.5-4 h, respectively. It was found that the hydrothermal temperature had resulted in a significant reduction of hydrochar yield as compared to the retention time. The raw microalgal biomass was successfully converted into an energy densified hydrochar via an optimized HTC reaction, with higher heating value (HHV) of 24.51 kJ/g, which was approximately two-times higher than that of raw biomass. In addition, the overall carbon recovery rate and energy yield were in the range of 53.2-86.4% and 46.9-76.6%, respectively. The high quality of the produced hydrochar was further supported by the plot of van Krevelen diagram and combustion behaviour analysis. Besides, the aqueous phase collected from HTC process could be further used as nutrients source to cultivate C. vulgaris, in which up to 70% of the biomass yield could be attained as compared to the control cultivation condition. The reusability of the aqueous phase collected from HTC process as an alternative nutrients source to cultivate microalgal indicated the feasibility and positive integration of HTC process in microalgal biofuel processing chain.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Carbono , Lipídeos , Temperatura
8.
Angew Chem Int Ed Engl ; 59(51): 22894-22915, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32009290

RESUMO

Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.

9.
J Environ Manage ; 228: 383-392, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243074

RESUMO

Recycling of alternative water sources particularly greywater and recovery of energy from wastewater are gaining momentum due to clean water scarcity and energy crisis. In this study, the photocatalytic fuel cell (PFC) employing ZnO/Zn photoanode and CuO/Cu photocathode was successfully designed for effective greywater recycling as well as energy recovery. The photoelectrodes were analyzed using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and fourier transform infrared (FTIR) spectroscopy. The PFC performance in terms of electricity generation and parallel methyl green (MG) degradation were evaluated under operating parameters such as electrolyte type, initial MG concentration and solution pH. The results showed that the addition of Na2SO4 electrolyte, MG concentration of 40 mg L-1 and solution pH of 5.2 improved the short circuit current density (Jsc) and power density (Pmax) in the as-constructed PFC. Such a system also afforded highest MG and chemical oxygen demand (COD) removal efficiencies after 4 h of irradiation. The photoanodes used in this study demonstrated great recyclability after four repetition tests. The COD removal was reduced to some extents when the PFC treatment was tested in the real greywater under optimal conditions. Various greywater quality parameters including ammoniacal nitrogen (NH3-N), turbidity, pH and biochemical oxygen demand (BOD5) were also monitored. The phytotoxicity experiments via Vigna radiate seeds indicated a reduction in the phytotoxicity.


Assuntos
Verde de Metila/química , Análise da Demanda Biológica de Oxigênio , Catálise , Eletricidade , Eletrólitos , Fósforo/química , Águas Residuárias/química
10.
Prep Biochem Biotechnol ; 47(2): 111-115, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143318

RESUMO

Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m-3 and 0.55 mL h-1, respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.


Assuntos
Anabaena/metabolismo , Dióxido de Carbono/metabolismo , Hidrogênio/metabolismo , Oxigênio/metabolismo , Cinética
11.
Arch Microbiol ; 198(2): 101-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26521065

RESUMO

This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.


Assuntos
Cianobactérias/citologia , Cianobactérias/metabolismo , Hidrogênio/metabolismo , Meios de Cultura/química , Cianobactérias/efeitos dos fármacos , Cianobactérias/enzimologia , Nitrogenase/metabolismo , Triptofano/análogos & derivados , Triptofano/farmacologia
12.
Waste Manag Res ; 33(4): 303-12, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804669

RESUMO

Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out.


Assuntos
Poluentes Atmosféricos/química , Arecaceae/química , Biomassa , Carvão Vegetal/química , Gases/química , Gerenciamento de Resíduos/métodos , Adsorção , Porosidade
13.
ScientificWorldJournal ; 2014: 910590, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672390

RESUMO

The intrinsic growth, substrate uptake, and product formation biokinetic parameters were obtained for the anaerobic bacterium, Clostridium ljungdahlii, grown on synthesis gas in various pressurized batch bioreactors. A dual-substrate growth kinetic model using Luong for CO and Monod for H2 was used to describe the growth kinetics of the bacterium on these substrates. The maximum specific growth rate (µ(max) = 0.195 h(-1)) and Monod constants for CO (K s,CO = 0.855 atm) and H2 (K(s,H2) = 0.412 atm) were obtained. This model also accommodated the CO inhibitory effects on cell growth at high CO partial pressures, where no growth was apparent at high dissolved CO tensions (P(CO)(∗) > 0.743 atm). The Volterra model, Andrews, and modified Gompertz were, respectively, adopted to describe the cell growth, substrate uptake rate, and product formation. The maximum specific CO uptake rate (q(max) = 34.364 mmol/g cell/h), CO inhibition constant (K(I) = 0.601 atm), and maximum rate of ethanol (R(max) = 0.172 mmol/L/h at P(CO) = 0.598 atm) and acetate (R(max) = 0.096 mmol/L/h at P(CO) = 0.539 atm) production were determined from the applied models.


Assuntos
Biocombustíveis , Clostridium/metabolismo , Fermentação , Gases/metabolismo , Cinética
14.
J Colloid Interface Sci ; 662: 870-882, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382371

RESUMO

The extensive examination of hexagonal molybdenum carbide (ß-Mo2C) as a non-noble cocatalyst in the realm of photocatalytic H2 evolution is predominantly motivated by its exceptional capacity to adsorb H+ ions akin to Pt and its advantageous conductivity characteristics. However, the H2 evolution rate of photocatalysts modified with ß-Mo2C is limited as a result of their comparatively low ability to release H through desorption. Therefore, a facile method was employed to synthesize carbon intercalated dual phase molybdenum carbide (MC@C) quantum dots (ca. 3.13 nm) containing both α-MoC and ß-Mo2C decorated on g-C3N4 (gCN). The synthesis process involved a simple and efficient combination of sonication-assisted self-assembly and calcination techniques. 3-MC@C/gCN exhibited the highest efficiency in generating H2, with a rate of 4078 µmol g-1h-1 under 4 h simulated sunlight irradiation, which is 13 times higher than pristine gCN. Furthermore, from the cycle test, 3-MC@C/gCN showcased exceptional photochemical stability of 65 h, as it maintained a H2 evolution rate of 40 mmol g-1h-1. The heightened level of activity observed in the 3-MC@C/gCN system can be ascribed to the synergistic effects of MoC-Mo2C that arise due to the existence of a carbon layer. The presence of a carbon layer enhanced the transmission of photoinduced electrons, while the MoC-Mo2C@C composite served as active sites, thereby facilitating the H2 production reaction of gCN. The present study introduces a potentially paradigm-shifting concept pertaining to the exploration of novel Mo-based cocatalysts with the aim of augmenting the efficacy of photocatalytic H2 production.

15.
J Nanosci Nanotechnol ; 13(7): 4825-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901504

RESUMO

The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.


Assuntos
Dióxido de Carbono/química , Carbono/química , Nanopartículas Metálicas/química , Catálise
16.
Environ Technol ; 34(9-12): 1097-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191441

RESUMO

In the work presented here, photocatalytic systems using TiO2 and ZnO suspensions were utilized to evaluate the degradation of resorcinol (ReOH). The effects of catalyst concentration and solution pH were investigated and optimized using multivariate analysis based on response surface methodology. The results indicated that ZnO showed greater degradation and mineralization activities compared to TiO2 under optimized conditions. Using certain radical scavengers, a positive hole, together with the participation of hydroxyl radicals, were the oxidative species responsible for ReOH degradation on TiO2 whereas, the ZnO photocatalysis occurred principally via hydroxyl radicals. Some hitherto unreported pathway intermediates of ReOH degradation were identified using gas chromatography-mass spectrometry. A tentative reaction mechanism for the formation of these intermediates was proposed. Moreover, the figure-of-merit electrical energy per order was employed to estimate the electrical energy consumption.


Assuntos
Disruptores Endócrinos/química , Recuperação e Remediação Ambiental/métodos , Resorcinóis/química , Titânio/química , Poluentes Químicos da Água/química , Óxido de Zinco/química , Análise de Variância , Disruptores Endócrinos/análise , Resíduos Industriais , Modelos Moleculares , Processos Fotoquímicos , Projetos de Pesquisa , Resorcinóis/análise , Poluentes Químicos da Água/análise
17.
Environ Sci Pollut Res Int ; 30(7): 17129-17148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35554814

RESUMO

Removal of H2S (hydrogen sulfide) from biogas is anticipated for higher energy conversion of methane (CH4), while reducing the detrimental impacts of corroding the metal parts in the plant and its hazardous effect on humans and the environment. The introduction of microwave (MW) heating and nitrogen-modification could generate superior adsorbent features, contributing to high H2S removal. Up to date, there is no work reported on the influence of physicochemical characteristics of nitrogen-modified carbon synthesized via MW and conventional heating (TH) methods and their performance in H2S removal. Palm shell activated carbon (PSAC) was functionalized with nitrogen groups via urea impregnation, followed by the synthesis of MW and TH at 950 °C, 500 ml/min of N2 flow rate and 30 min of heating time. MW and TH heating effects on the modified PSAC adsorbent were analysed and compared towards hydrogen sulfide (H2S) removal. PSAC with nitrogen functionalization produced using MW heating (PSAC-MW) demonstrates superior performance, with an adsorption capacity of 356.94 mg/g. The adsorbent sample generated using MW heating exhibited notable properties, including a large surface area and a sponge-like structure, with new pores developed within the current pores. Instead of that, there was an observation of 'hot spot' appearance during the MW heating process, which is believed to be responsible for the development of physical and chemical characteristics of the adsorbent. Thus, it is believed that MW heating was assisted in the development of the adsorbent's properties and at the same time contributed to the high removal of H2S at low adsorption temperature. The utilization of biomass-based adsorbent (PSAC) for H2S removal can address the lignocellulosic waste disposal problem, while mitigating the H2S release from the biogas production plants thus has several environmental merits. This indirectly contributed to zero-waste generation, while overcoming the adverse effects of H2S.


Assuntos
Biocombustíveis , Sulfeto de Hidrogênio , Humanos , Biocombustíveis/análise , Carvão Vegetal/química , Micro-Ondas , Sulfeto de Hidrogênio/análise , Nitrogênio/análise , Adsorção
18.
Nanoscale ; 15(14): 6536-6562, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942445

RESUMO

The electro/photocatalytic CO2 reduction reaction (CO2RR) is a long-term avenue toward synthesizing renewable fuels and value-added chemicals, as well as addressing the global energy crisis and environmental challenges. As a result, current research studies have focused on investigating new materials and implementing numerous fabrication approaches to increase the catalytic performances of electro/photocatalysts toward the CO2RR. MXenes, also known as 2D transition metal carbides, nitrides, and carbonitrides, are intriguing materials with outstanding traits. Since their discovery in 2011, there has been a flurry of interest in MXenes in electrocatalysis and photocatalysis, owing to their several benefits, including high mechanical strength, tunable structure, surface functionality, high specific surface area, and remarkable electrical conductivity. Herein, this review serves as a milestone for the most recent development of MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR. The overall structure of MXenes is described, followed by a summary of several synthesis pathways classified as top-down and bottom-up approaches, including HF-etching, in situ HF-formation, electrochemical etching, and halogen etching. Additionally, the state-of-the-art development in the field of both the electrocatalytic and photocatalytic CO2RR is systematically reviewed. Surface termination modulation and heterostructure engineering of MXene-based electro/photocatalysts, and insights into the reaction mechanism for the comprehension of the structure-performance relationship from the CO2RR via density functional theory (DFT) have been underlined toward activity enhancement. Finally, imperative issues together with future perspectives associated with MXene-based electro/photocatalysts are proposed.

19.
ACS Omega ; 8(2): 1851-1863, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687105

RESUMO

Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.

20.
Nat Commun ; 14(1): 7676, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996415

RESUMO

Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnIn2S4 (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA