Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 474(23): 3871-3886, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29025976

RESUMO

In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a ß-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon-carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.


Assuntos
Proteínas de Bactérias/química , Ligases/química , Xanthomonas campestris/enzimologia , Acil Coenzima A/química , Acil Coenzima A/genética , Alcenos/química , Alcenos/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ligases/genética , Mutação de Sentido Incorreto , Xanthomonas campestris/genética
2.
J Biol Chem ; 291(52): 26698-26706, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27815501

RESUMO

Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a ß-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluß117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Acil Coenzima A/metabolismo , Alcenos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Xanthomonas campestris/enzimologia , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Conformação Proteica , Especificidade por Substrato , Xanthomonas campestris/genética
3.
FEBS Lett ; 592(6): 987-998, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29430657

RESUMO

Renewable production of hydrocarbons is being pursued as a petroleum-independent source of commodity chemicals and replacement for biofuels. The bacterial biosynthesis of long-chain olefins represents one such platform. The process is initiated by OleA catalyzing the condensation of two fatty acyl-coenzyme A substrates to form a ß-keto acid. Here, the mechanistic role of the conserved His285 is investigated through mutagenesis, activity assays, and X-ray crystallography. Our data demonstrate that His285 is required for product formation, influences the thiolase nucleophile Cys143 and the acyl-enzyme intermediate before and after transesterification, and orchestrates substrate coordination as a defining component of an oxyanion hole. As a consequence, His285 plays a key role in enabling a mechanistic strategy in OleA that is distinct from other thiolases.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , Xanthomonas campestris/enzimologia , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Histidina/química , Histidina/genética , Histidina/metabolismo , Xanthomonas campestris/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA