Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Neuroradiol ; 51(5): 101211, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908545

RESUMO

BACKGROUND AND PURPOSE: To determine the effect of mild chronic traumatic brain injury (cTBI) on cerebral blood flow and metabolism. METHODS: 62 cTBI and 40 healthy controls (HCs) with no prior history of cTBI underwent both pulsed arterial spin labeling functional magnetic resonance imaging (PASL-fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) scanning via a Siemens mMR (simultaneous PET/MRI) scanner. 30 participants also took part in a series of neuropsychological clinical measures (NCMs). Images were processed using statistical parametric mapping software relevant to each modality to generate relative cerebral blood flow (rCBF) and glucose metabolic standardized uptake value ratio (gSUVR) grey matter maps. A voxel-wise two-sample T-test and two-tailed gaussian random field correction for multiple comparisons was performed. RESULTS: cTBI patients showed a significant increase in rCBF and gSUVR in the right thalamus as well as a decrease in bilateral occipital lobes and calcarine sulci. An inverse relationship between rCBF and gSUVR was found in the left frontal lobe, the left precuneus and regions in the right temporal lobe. Within those regions rCBF values correlated with 9 distinct NCMs and gSUVR with 3. CONCLUSION: Simultaneous PASL-fMRI and FDG-PET can identify functional changes in a mild cTBI population. Within this population FDG-PET identified more regions of functional disturbance than ASL fMRI and NCMs are shown to correlate with rCBF and glucose metabolism (gSUVR) in various brain regions. As a result, both imaging modalities contribute to understanding the underlying pathophysiology and clinical course of mild chronic traumatic brain injury.

2.
Hum Brain Mapp ; 43(1): 129-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32310331

RESUMO

The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Acidente Vascular Cerebral , Humanos , Estudos Multicêntricos como Assunto , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
3.
Spinal Cord ; 60(5): 457-464, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35379960

RESUMO

STUDY DESIGN: This investigation was a cohort study that included: 36 typically developing (TD) children and 19 children with spinal cord lesions who underwent spinal cord MRI. OBJECTIVES: To investigate diffusion tensor imaging (DTI) cervical and thoracic spinal cord changes in pediatric patients that have clinically traumatic and non-traumatic spinal cord injury (SCI) without MR (SCIWOMR) abnormalities. SETTING: Thomas Jefferson University, Temple University, Shriners Hospitals for Children all in Philadelphia, USA. METHODS: 36 TD children and 19 children with spinal cord lesions that represent either a chronic traumatic acquired SCI or chronic non-traumatic SCI (≥6 months post injury), age range, 6-16 years who underwent cervical and thoracic spinal cord MRI in 2014-2017. Additionally DTI was correlated to clinical American Spinal Injury Association Impairment Scale (AIS). RESULTS: Both SCIWOMR and MRI positive (+) groups showed abnormal FA and RD DTI values in the adjacent MRI-normal appearing segments of cephalad and caudal spinal cord compared to TD. The FA values demonstrated perilesional abnormal DTI findings in the middle and proximal segments of the cephalad and caudal cord in the SCIWOMR AIS A/B group compared to SCIWOMR AIS C/D group. CONCLUSIONS: We found DTI changes in children with SCIWOMR with different causes of spinal lesions. We also investigated the relationship between DTI and clinical AIS scores. This study further examined the potential diagnostic value of DTI and should be translatable to adults with spinal cord lesions.


Assuntos
Transtornos Motores , Traumatismos da Medula Espinal , Adolescente , Adulto , Criança , Estudos de Coortes , Imagem de Tensor de Difusão/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Motores/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia
4.
J Digit Imaging ; 31(4): 543-552, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29340936

RESUMO

The purpose of this study was to evaluate an improved and reliable visualization method for pediatric spinal cord MR images in healthy subjects and patients with spinal cord injury (SCI). A total of 15 pediatric volunteers (10 healthy subjects and 5 subjects with cervical SCI) with a mean age of 11.41 years (range 8-16 years) were recruited and scanned using a 3.0T Siemens Verio MR scanner. T2-weighted axial images were acquired covering entire cervical spinal cord level C1 to C7. These gray-scale images were then converted to color images by using five different techniques including hue-saturation-value (HSV), rainbow, red-green-blue (RGB), and two enhanced RGB techniques using automated contrast stretching and intensity inhomogeneity correction. Performance of these techniques was scored visually by two neuroradiologists within three selected cervical spinal cord intervertebral disk levels (C2-C3, C4-C5, and C6-C7) and quantified using signal to noise ratio (SNR) and contrast to noise ratio (CNR). Qualitative and quantitative evaluation of the color images shows consistent improvement across all the healthy and SCI subjects over conventional gray-scale T2-weighted gradient echo (GRE) images. Inter-observer reliability test showed moderate to strong intra-class correlation (ICC) coefficients in the proposed techniques (ICC > 0.73). The results suggest that the color images could be used for quantification and enhanced visualization of the spinal cord structures in addition to the conventional gray-scale images. This would immensely help towards improved delineation of the gray/white and CSF structures and further aid towards accurate manual or automatic drawings of region of interests (ROIs).


Assuntos
Vértebras Cervicais/lesões , Imageamento por Ressonância Magnética/métodos , Intensificação de Imagem Radiográfica/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Adolescente , Estudos de Casos e Controles , Criança , Cor , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Controle de Qualidade , Valores de Referência , Razão Sinal-Ruído
5.
Res Sq ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39011114

RESUMO

Diffusion tensor imaging (DTI) of the spinal cord has been extensively used to identify biomarkers for spinal cord pathology. Previously, the longitudinal ComBat (longComBat) technique was examined to reduce scanner effects in multi-site, multi-scanner spinal cord DTI data. This study aimed to assess its effectiveness on longitudinal scans using a single-scanner pediatric dataset, including healthy and spinal cord injury (SCI) subjects. Two identical datasets were collected from 42 healthy and 27 SCI subjects with a 2-hour interval between scans on a 3T Siemens MRI scanner. Axial DTI images of the entire cervical and thoracic spinal cord were obtained, and various average diffusion tensor metrics (FA, MD, RD, & AD) were measured at each vertebral level. Pearson correlation and intraclass correlation coefficients were used to evaluate inter- and intra-subject agreement pre- and post-harmonization. Minimal improvement in agreement was observed with the mean square residual (MSR) model, while the restricted maximum likelihood estimator (REML) model showed reduced intra-subject agreement in all the tensor metrics. The significant variability between longitudinal DTI scans within a single scanner was likely due to physiological motion rather than scanner effects. Post-harmonization using the longComBat MSR model showed limited improvement in agreement.

6.
Magn Reson Imaging ; 105: 57-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939969

RESUMO

PURPOSE: Diffusion MRI continues to play a key role in non-invasively assessing spinal cord integrity and pre-operative injury evaluation. However, post-operative Diffusion Tensor Imaging (DTI) acquisition of patients with metal implants results in severe geometric distortion. We propose and demonstrate a method to alleviate the technical challenges facing the acquisition of DTI on post-operative cases and longitudinal evaluation of therapeutics. MATERIAL AND METHODS: The described technique is based on the combination of the reduced Field-Of-View (rFOV) strategy and the phase segmented EPI, termed rFOV-PS-EPI. A custom-built phantom based on a cervical spine model with metal implants was used to collect DTI data at 3 Tesla scanner using: rFOV-PS-EPI, reduced Field-Of-View single-shot EPI (rFOV-SS-EPI), and conventional full FOV techniques including SS-EPI, PS-EPI, and readout-segmented EPI (RS-EPI). Geometric distortion, SNR, and signal void were assessed to evaluate images and compare the sequences. A two-sample t-test was performed with p-value of 0.05 or less to indicate statistical significance. RESULTS: The reduced FOV techniques showed better capability to reduce distortions compared to the Full FOV techniques. The rFOV-PS-EPI method provided DTI images of the phantom at the level of the hardware whereas the conventional rFOV-SS-EPI is useful only when the metal is approximately 20 mm away. In addition, compared to the rFOV-SS-EPI technique, the suggested approach produced smaller signal voids area as well as significantly reduced geometric distortion in Circularity (p < 0.005) and Eccentricity (p < 0.005) measurements. No statistically significant differences were found for these geometric distortion measurements between the rFOV-PS-EPI DTI sequence and conventional structural T2 images (p > 0.05). CONCLUSION: The combination of rFOV and a phase-segmented acquisition approach is effective for reducing metal-induced distortions in DTI scan on spinal cord with metal hardware at 3 T.


Assuntos
Artefatos , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Medula Espinal , Imagem Ecoplanar/métodos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia
7.
Front Neurol ; 15: 1282198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299014

RESUMO

Mild traumatic brain injury (mTBI) is a significant public health concern, specially characterized by a complex pattern of abnormal neural activity and functional connectivity. It is often associated with a broad spectrum of short-term and long-term cognitive and behavioral symptoms including memory dysfunction, headache, and balance difficulties. Furthermore, there is evidence that oxidative stress significantly contributes to these symptoms and neurophysiological changes. The purpose of this study was to assess the effect of N-acetylcysteine (NAC) on brain function and chronic symptoms in mTBI patients. Fifty patients diagnosed with chronic mTBI participated in this study. They were categorized into two groups including controls (CN, n = 25), and patients receiving treatment with N-acetyl cysteine (NAC, n = 25). NAC group received 50 mg/kg intravenous (IV) medication once a day per week. In the rest of the week, they took one 500 mg NAC tablet twice per day. Each patient underwent rs-fMRI scanning at two timepoints including the baseline and 3 months later at follow-up, while the NAC group received a combination of oral and IV NAC over that time. Three rs-fMRI metrics were measured including fractional amplitude of low frequency fluctuations (fALFF), degree centrality (DC), and functional connectivity strength (FCS). Neuropsychological tests were also assessed at the same day of scanning for each patient. The alteration of rs-fMRI metrics and cognitive scores were measured over 3 months treatment with NAC. Then, the correlation analysis was executed to estimate the association of rs-fMRI measurements and cognitive performance over 3 months (p < 0.05). Two significant group-by-time effects demonstrated the changes of rs-fMRI metrics particularly in the regions located in the default mode network (DMN), sensorimotor network, and emotional circuits that were significantly correlated with cognitive function recovery over 3 months treatment with NAC (p < 0.05). NAC appears to modulate neural activity and functional connectivity in specific brain networks, and these changes could account for clinical improvement. This study confirmed the short-term therapeutic efficacy of NAC in chronic mTBI patients that may contribute to understanding of neurophysiological effects of NAC in mTBI. These findings encourage further research on long-term neurobehavioral assessment of NAC assisting development of therapeutic plans in mTBI.

8.
Neurotrauma Rep ; 5(1): 16-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249324

RESUMO

The great majority of spinal cord injury (SCI) patients have debilitating chronic pain. Despite decades of research, these pain pathways of neuropathic pain (NP) are unknown. SCI patients have been shown to have abnormal brain pain pathways. We hypothesize that SCI NP patients' pain matrix is altered compared to SCI patients without NP. This study examines the functional connectivity (FC) in SCI patients with moderate-severe chronic NP compared to SCI patients with mild-no NP. These groups were compared to control subjects. The Neuropathic Pain Questionnaire and neurological evaluation based on the International Standard Neurological Classification of SCI were utilized to define the severity and level of injury. Of the 10 SCI patients, 7 (48.6 ± 17.02 years old, 6 male and 1 female) indicated that they had NP and 3 did not have NP (39.33 ± 8.08 years old, 2 male and 1 female). Ten uninjured neurologically intact participants were used as controls (24.8 ± 4.61 years old, 5 male and 5 female). FC metrics were obtained from the comparisons of resting-state functional magnetic resonance imaging among our various groups (controls, SCI with NP, and SCI without NP). For each comparison, a region-of-interest (ROI)-to-ROI connectivity analysis was pursued, encompassing a total of 175 ROIs based on a customized atlas derived from the AAL3 atlas. The analysis accounted for covariates such as age and sex. To correct for multiple comparisons, a strict Bonferroni correction was applied with a significance level of p < 0.05/NROIs. When comparing SCI patients with moderate-to-severe pain to those with mild-to-no pain, specific thalamic nuclei had altered connections. These nuclei included: medial pulvinar; lateral pulvinar; medial geniculate nucleus; lateral geniculate nucleus; and mediodorsal magnocellular nucleus. There was increased FC between the lateral geniculate nucleus and the anteroventral nucleus in NP post-SCI. Our analysis additionally highlights the relationships between the frontal lobe and temporal lobe with pain. This study successfully identifies thalamic neuroplastic changes that occur in patients with SCI who develop NP. It additionally underscores the pain matrix and involvement of the frontal and temporal lobes as well. Our findings complement that the development of NP post-SCI involves cognitive, emotional, and behavioral influences.

9.
Int J Neurosci ; 123(2): 121-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23098383

RESUMO

The current study examined the role of the hippocampus in emotional memory encoding using functional magnetic resonance imaging (fMRI). The present study examined the activation patterns of 12 healthy participants who were associated with memory for words and pictures with moderately high emotional tone. Results revealed significant activation in the temporal and frontal lobes for emotional and neutral stimuli. There was greater activation in the left hippocampus for emotional words and the right hippocampus for emotional pictures. However, a separate analysis of gender suggested that the emotional responses of the women accounted for the activation of the hippocampus; men did not have a pattern of hippocampus activation consistent with the type of stimuli. These findings have important implications for the design of a clinical memory assessment using fMRI.


Assuntos
Mapeamento Encefálico/métodos , Emoções/fisiologia , Hipocampo/metabolismo , Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Caracteres Sexuais , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos
10.
Top Spinal Cord Inj Rehabil ; 19(2): 121-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671382

RESUMO

BACKGROUND: The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) are internationally accepted to determine and classify the extent of motor and sensory impairment along with severity (ASIA Impairment Scale [AIS]) following spinal cord injury (SCI). The anorectal examination is a component of the ISNCSCI that determines injury severity. There is a void in the health care literature on the validity of the anorectal examination as an indication of SCI severity. OBJECTIVE: To validate the use of functional magnetic resonance imagining (fMRI) for the purpose of classifying the severity of SCI in children. METHODS: Seventeen patients, with the average age of 14.3 years, underwent 1 complete ISNCSCI examination. Subjects also underwent the anorectal portion of this exam while fMRI data were collected using a 3.0 Tesla Siemens Verio Scanner. Cortical areas of activation were analyzed for possible differences of cortical involvement between complete (AIS A) and incomplete (AIS B, C, and D) SCI subjects. Anxiety/anticipation of the test was also assessed. RESULTS: This study established an fMRI imaging protocol that captures the cortical locations and intensity of activation during the test of sacral sparing. In addition to developing the data acquisition protocol, we also established the postacquisition preprocessing and statistical analysis parameters using SPM8. CONCLUSION: Preliminary findings indicate that fMRI is a useful tool in evaluating the validity of the anorectal examination in determining SCI severity. Assessment of which cortical regions are activated during the testing procedure provides an indication of which pathways are transmitting information to the brain.

11.
J Neuroimaging ; 33(1): 109-120, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097249

RESUMO

BACKGROUND AND PURPOSE: A number of functional magnetic resonance imaging (fMRI) studies rely on application of anesthetic agents during scanning that can modulate and complicate interpretation of the measured hemodynamic blood oxygenation level-dependent (BOLD) response. The purpose of the present study was to investigate the effect of general anesthesia on two main components of BOLD signal including neuronal activity and vascular response. METHODS: Breath-holding (BH) fMRI was conducted in wakefulness and under anesthesia states in 9 patients with drug-resistant epilepsy who needed to get scanned under anesthesia during laser interstitial thermal therapy. BOLD and BOLD cerebrovascular reactivity (BOLD-CVR) maps were compared using t-test between two states to assess the effect of anesthesia on neuronal activity and vascular factors (p < .05). RESULTS: Overall, our findings revealed an increase in BOLD-CVR and decrease in BOLD response under anesthesia in several brain regions. The results proposed that the modulatory mechanism of anesthetics on neuronal and vascular components of BOLD signal may work in different ways. CONCLUSION: This experiment for the first human study showed that anesthesia may play an important role in dissociation between neuronal and vascular responses contributed to hemodynamic BOLD signal using BH fMRI imaging that may assist the implication of general anesthesia and interpretation of outcomes in clinical setting.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia , Oxigênio , Encéfalo/irrigação sanguínea , Anestesia Geral
12.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993535

RESUMO

Diffusion MRI continues to play a key role in non-invasively assessing spinal cord integrity and pre-operative injury evaluation. However, post-operative Diffusion Tensor Imaging (DTI) acquisition of a patient with a metal implant results in severe geometric image distortion. A method has been proposed here to alleviate the technical challenges facing the acquisition of DTI in post-operative cases and to evaluate longitudinal therapeutics. The described technique is based on the combination of the reduced Field-Of-View (rFOV) strategy and the phase segmented acquisition scheme (rFOV-PS-EPI) for significantly mitigating metal-induced distortions. A custom-built phantom based on spine model with metal implant was used to collect high-resolution DTI data at 3 Tesla scanner using a home-grown diffusion MRI pulse sequence, rFOV-PS-EPI, single-shot (rFOV-SS-EPI), and the conventional full FOV techniques including SS-EPI, PS-EPI, and the readout-segmented (RS-EPI). This newly developed method provides high-resolution images with significant reduced metal-induced artifacts. In contrast to the other techniques, the rFOV-PS-EPI allows DTI measurement at the level of the metal hardware whereas the current rFOV-SS-EPI is useful when the metal is approximately 20 mm away. The developed approach enables high-resolution DTI in patients with metal implant.

13.
Neurosurgery ; 93(3): 691-698, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37010304

RESUMO

BACKGROUND: Precise electrode position is vital for effective deep brain stimulation in treating motor symptoms in Parkinson's disease (PD). Enlarged perivascular spaces (PVSs) are associated with pathophysiology of neurodegenerative diseases including PD and may affect the microstructure of surrounding brain tissue. OBJECTIVE: To quantify the clinical implications of enlarged PVS on tractography-based stereotactic targeting in patients with advanced PD selected to undergo deep brain stimulation. METHODS: Twenty patients with PD underwent MRI scanning. The PVS areas were visualized and segmented. Based on the size of the PVS areas, the patient group was split into 2 categories of large vs small PVSs. Probabilistic and deterministic tractography methods were applied to a diffusion-weighted data set. Fiber assignment was performed using motor cortex as an initiation seed and the globus pallidus interna and subthalamic nucleus, separately, as inclusion masks. Two exclusion masks used consisted of cerebral peduncles and the PVS mask. The center of gravity of the tract density map was measured and compared between the tracts generated with and without consideration of the PVS mask. RESULTS: The average differences between the center of gravity of the tracts made by excluding PVS and without excluding PVS using deterministic and probabilistic tractography methods were less than 1 mm. Statistical analysis showed nonsignificant differences between deterministic and probabilistic methods and differences between patients with large and small PVSs ( P > .05). CONCLUSION: This study demonstrated that the presence of enlarged PVS is unlikely to affect targeting of basal ganglia nuclei based on tractography.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estudos Prospectivos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Encéfalo
14.
Sci Rep ; 13(1): 21014, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030651

RESUMO

General anesthesia (GA) during surgery is commonly maintained by inhalational sevoflurane. Previous resting state functional MRI (rs-fMRI) studies have demonstrated suppressed functional connectivity (FC) of the entire brain networks, especially the default mode networks, transitioning from the awake to GA condition. However, accuracy and reliability were limited by previous administration methods (e.g. face mask) and short rs-fMRI scans. Therefore, in this study, a clinical scenario of epilepsy patients undergoing laser interstitial thermal therapy was leveraged to acquire 15 min of rs-fMRI while under general endotracheal anesthesia to maximize the accuracy of sevoflurane level. Nine recruited patients had fMRI acquired during awake and under GA, of which seven were included in both static and dynamic FC analyses. Group independent component analysis and a sliding-window method followed by k-means clustering were applied to identify four dynamic brain states, which characterized subtypes of FC patterns. Our results showed that a low-FC brain state was characteristic of the GA condition as a single featuring state during the entire rs-fMRI session; In contrast, the awake condition exhibited frequent fluctuations between three distinct brain states, one of which was a highly synchronized brain state not seen in GA. In conclusion, our study revealed remarkable dynamic connectivity changes from awake to GA condition and demonstrated the advantages of dynamic FC analysis for future studies in the assessments of the effects of GA on brain functional activities.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Sevoflurano/farmacologia , Reprodutibilidade dos Testes , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Anestesia Geral/efeitos adversos
15.
Front Neurosci ; 17: 1333725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312737

RESUMO

Mild traumatic brain injury (mTBI) is a public health concern. The present study aimed to develop an automatic classifier to distinguish between patients with chronic mTBI (n = 83) and healthy controls (HCs) (n = 40). Resting-state functional MRI (rs-fMRI) and positron emission tomography (PET) imaging were acquired from the subjects. We proposed a novel deep-learning-based framework, including an autoencoder (AE), to extract high-level latent and rectified linear unit (ReLU) and sigmoid activation functions. Single and multimodality algorithms integrating multiple rs-fMRI metrics and PET data were developed. We hypothesized that combining different imaging modalities provides complementary information and improves classification performance. Additionally, a novel data interpretation approach was utilized to identify top-performing features learned by the AEs. Our method delivered a classification accuracy within the range of 79-91.67% for single neuroimaging modalities. However, the performance of classification improved to 95.83%, thereby employing the multimodality model. The models have identified several brain regions located in the default mode network, sensorimotor network, visual cortex, cerebellum, and limbic system as the most discriminative features. We suggest that this approach could be extended to the objective biomarkers predicting mTBI in clinical settings.

16.
J Spinal Cord Med ; 46(6): 950-957, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-34855576

RESUMO

PURPOSE: The purpose of this work was to employ a semi-automatic method for measuring spinal cord cross-sectional area (SCCSA) and investigate the correlations between diffusion tensor imaging (DTI) metrics and SCCSA for the cervical and thoracic spinal cord for typically developing pediatric subjects and pediatric subject with spinal cord injury. METHODS: Ten typically developing (TD) pediatric subjects and ten pediatric subjects with spinal cord injury (SCI) were imaged using a Siemens Verio 3 T MR scanner to acquire DTI and high-resolution anatomic scans covering the cervical and thoracic spinal cord (C1-T12). SCCSA was measured using a semi-automated edge detection algorithm for the entire spinal cord. DTI metrics were obtained from whole cord axial ROIs at each vertebral level. SCCSA measures were compared to DTI metrics by vertebral level throughout the entire cord, and above and below the injury site. Correlation analysis was performed to compare SCCSA, DTI and clinical measures as determined by the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination. RESULTS: In subjects with SCI, FA and SCCSA had a positive correlation (r = 0.81, P < 0.01), while RD and SCCSA had a negative correlation (r = -0.68, P = 0.02) for the full spinal cord. FA and SCCSA were correlated above (r = 0.56, P < 0.01) and below (r = 0.54, P < 0.01) the injury site. TD subjects showed negative correlations between AD and SCCSA (r = -0.73, P = 0.01) and RD and SCCSA (r = -0.79, P < 0.01). CONCLUSION: The ability to quickly and effectively measure SCCSA in subjects with SCI has the potential to allow for a better understanding of the progression of atrophy following a SCI. Correlations between cord cross section and DTI metrics by vertebral level suggest that imaging inferior and superior to lesion may yield useful information for diagnosis and prognosis.


Assuntos
Traumatismos da Medula Espinal , Humanos , Criança , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Imagem de Tensor de Difusão/métodos , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Prognóstico
17.
J Neuroimaging ; 33(3): 446-454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36813464

RESUMO

BACKGROUND AND PURPOSE: Spatial registration is crucial in establishing correspondence between anatomic brain regions for research and clinical purposes. The insular cortex (IC) and gyri (IG) are implicated in various functions and pathologies including epilepsy. Optimizing registration of the insula to a common atlas can improve the accuracy of group-level analyses. Here, we compared six nonlinear, one linear, and one semiautomated registration algorithms (RAs) for registering the IC and IG to the Montreal Neurologic Institute standard space (MNI152). METHODS: 3T images acquired from 20 controls and 20 temporal lobe epilepsy patients with mesial temporal sclerosis underwent automated segmentation of the insula. This was followed by manual segmentation of the entire IC and six individual IGs. Consensus segmentations were created at 75% agreement for IC and IG before undergoing registration to MNI152 space with eight RAs. Dice similarity coefficients (DSCs) were calculated between segmentations after registration and the IC and IG in MNI152 space. Statistical analysis involved the Kruskal-Wallace test with Dunn's test for IC and two-way analysis of variance with Tukey's honest significant difference test for IG. RESULTS: DSCs were significantly different between RAs. Based on multiple pairwise comparisons, we report that certain RAs performed better than others across population groups. Additionally, registration performance differed according to specific IG. CONCLUSION: We compared different methods for registering the IC and IG to MNI152 space. We found differences in performance between RAs, which suggests that algorithm choice is important factor in analyses involving the insula.


Assuntos
Epilepsia , Córtex Insular , Humanos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/patologia , Epilepsia/patologia , Processamento de Imagem Assistida por Computador/métodos
18.
J Neuroimaging ; 33(5): 781-791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188633

RESUMO

BACKGROUND AND PURPOSE: Spinal cord injury (SCI) results in the loss of motor and sensory function from disconnections between efferent and afferent pathways. Most SCI patients are affected with chronic neuropathic pain, but there is a paucity of data concerning neuroplastic changes following SCI. Chronic pain disrupts default networks and is associated with abnormal insular connectivity. The posterior insula (PI) is associated with the degree of pain and intensity of pain. The anterior insula (AI) is related to signal changes. Comprehension of SCI pain mechanisms is essential to elucidate effective treatment options. METHODS: This study examines the insular gyri functional connectivity (FC) of seven (five male, two female) SCI participants with moderate-severe chronic pain compared to 10 (five male, five female) healthy controls (HC). All subjects had 3-Tesla MRI performed and resting-state functional MRI (fMRI) was acquired. FC metrics were obtained from the comparisons of resting-state fMRI among our various groups. A seed-to-voxel analysis was pursued, encompassing six gyri of the insula. For multiple comparisons, a correction was applied with a significance level of p < .05. RESULTS: There were significant differences in FC of the insula between SCI participants with chronic pain compared with HC. In the SCI participants, there was hyperconnectivity of the AI and PI to the frontal pole. In addition, there was increased FC noted between the PI and the anterior cingulate cortex. Hyperconnectivity was also observed between the AI and the occipital cortex. CONCLUSIONS: These findings illustrate that there is a complex hyperconnectivity and modulation of pain pathways after traumatic SCI.


Assuntos
Dor Crônica , Traumatismos da Medula Espinal , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Dor Crônica/diagnóstico por imagem , Dor Crônica/etiologia , Lobo Frontal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem
19.
Artigo em Inglês | MEDLINE | ID: mdl-37206659

RESUMO

Introduction: Epilepsy is defined as non-lesional (NLE) when a lesion cannot be localized via standard neuroimaging. NLE is known to have a poor response to surgery. Stereotactic electroencephalography (sEEG) can detect functional connectivity (FC) between zones of seizure onset (OZ) and early (ESZ) and late (LSZ) spread. We examined whether resting-state fMRI (rsfMRI) can detect FC alterations in NLE to see whether noninvasive imaging techniques can localize areas of seizure propagation to potentially target for intervention. Methods: This is a retrospective study of 8 patients with refractory NLE who underwent sEEG electrode implantation and 10 controls. The OZ, ESZ, and LSZ were identified by generating regions around sEEG contacts that recorded seizure activity. Amplitude synchronization analysis was used to detect the correlation of the OZ to the ESZ. This was also done using the OZ and ESZ of each NLE patient for each control. Patients with NLE were compared to controls individually using Wilcoxon tests and as a group using Mann-Whitney tests. Amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), degree of centrality (DoC), and voxel-mirrored homotopic connectivity (VMHC) were calculated as the difference between NLE and controls and compared between the OZ and ESZ and to zero. A general linear model was used with age as a covariate with Bonferroni correction for multiple comparisons. Results: Five out of 8 patients with NLE showed decreased correlations from the OZ to the ESZ. Group analysis showed patients with NLE had lower connectivity with the ESZ. Patients with NLE showed higher fALFF and ReHo in the OZ but not the ESZ, and higher DoC in the OZ and ESZ. Our results indicate that patients with NLE show high levels of activity but dysfunctional connections in seizure-related areas. Discussion: rsfMRI analysis showed decreased connectivity directly between seizure-related areas, while FC metric analysis revealed increases in local and global connectivity in seizure-related areas. FC analysis of rsfMRI can detect functional disruption that may expose the pathophysiology underlying NLE.

20.
World Neurosurg X ; 19: 100212, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37304157

RESUMO

Purpose: Identifying relationships between clinical features and quantitative characteristics of the amygdala-hippocampal and thalamic subregions in mesial temporal lobe epilepsy (mTLE) may offer insights into pathophysiology and the basis for imaging prognostic markers of treatment outcome. Our aim was to ascertain different patterns of atrophy or hypertrophy in mesial temporal sclerosis (MTS) patients and their associations with post-surgical seizure outcomes. To assess this aim, this study is designed in 2 folds: (1) hemispheric changes within MTS group and (2) association with postsurgical seizure outcomes. Methods and materials: 27 mTLE subjects with mesial temporal sclerosis (MTS) were scanned for conventional 3D T1w MPRAGE images and T2w scans. With respect to 12 months post-surgical seizure outcomes, 15 subjects reported being seizure free (SF) and 12 reported continued seizures. Quantitative automated segmentation and cortical parcellation were performed using Freesurfer. Automatic labeling and volume estimation of hippocampal subfields, amygdala, and thalamic subnuclei were also performed. The volume ratio (VR) for each label was computed and compared between (1) between contralateral and ipsilateral MTS using Wilcoxon rank-sum test and (2) SF and not seizure free (NSF) groups using linear regression analysis. False Discovery rate (FDR) with significant level of 0.05 were used in both analyses to correct for multiple comparisons. Results: Amygdala: The medial nucleus of the amygdala was the most significantly reduced in patients with continued seizures when compared to patients who remained seizure free. Hippocampus: Comparison of ipsilateral and contralateral volumes with seizure outcomes showed volume loss was most evident in the mesial hippocampal regions such as CA4 and hippocampal fissure. Volume loss was also most explicit in the presubiculum body in patients with continued seizures at the time of their follow-up. Ipsilateral MTS compared to contralateral MTS analysis showed the heads of the ipsilateral subiculum, presubiculum, parasubiculum, dentate gyrus, CA4, and CA3 were more significantly affected than their respective bodies. Volume loss was most noted in mesial hippocampal regions. Thalamus: VPL and PuL were the most significantly reduced thalamic nuclei in NSF patients. In all statistically significant areas, volume reduction was observed in the NSF group. No significant volume reductions were noted in the thalamus and amygdala when comparing ipsilateral to contralateral sides in mTLE subjects. Conclusions: Varying degrees of volume loss were demonstrated in the hippocampus, thalamus, and amygdala subregions of MTS, especially between patients who remained seizure-free and those who did not. The results obtained can be used to further understand mTLE pathophysiology. Clinical relevance/application: In the future, we hope these results can be used to deepen the understanding of mTLE pathophysiology, leading to improved patient outcomes and treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA