Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Virol ; 98(7): e0049824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953667

RESUMO

Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE: RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Proteólise , Enterovirus Humano B/metabolismo , Humanos , Camundongos , Animais , Células HeLa , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/metabolismo , Proteínas Virais/metabolismo , Proteômica/métodos , Interações Hospedeiro-Patógeno , Proteases Virais 3C/metabolismo , Linhagem Celular , Proteases Virais/metabolismo , Poliproteínas/metabolismo
2.
J Virol ; 97(8): e0060423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555661

RESUMO

Viruses have evolved diverse strategies to evade the host innate immune response and promote infection. The retinoic acid-inducible gene I (RIG-I)-like receptors RIG-I and MDA5 are antiviral factors that sense viral RNA and trigger downstream signal via mitochondrial antiviral-signaling protein (MAVS) to activate type I interferon expression. 14-3-3ε is a key component of the RIG-I translocon complex that interacts with MAVS at the mitochondrial membrane; however, the exact role of 14-3-3ε in this pathway is not well understood. In this study, we demonstrate that 14-3-3ε is a direct substrate of both the poliovirus and coxsackievirus B3 (CVB3) 3C proteases (3Cpro) and that it is cleaved at Q236↓G237, resulting in the generation of N- and C-terminal fragments of 27.0 and 2.1 kDa, respectively. While the exogenous expression of wild-type 14-3-3ε enhances IFNB mRNA production during poly(I:C) stimulation, expression of the truncated N-terminal fragment does not. The N-terminal 14-3-3ε fragment does not interact with RIG-I in co-immunoprecipitation assays, nor can it facilitate RIG-I translocation to the mitochondria. Probing the intrinsically disordered C-terminal region identifies key residues responsible for the interaction between 14-3-3ε and RIG-I. Finally, overexpression of the N-terminal fragment promotes CVB3 infection in mammalian cells. The strategic enterovirus 3Cpro-mediated cleavage of 14-3-3ε antagonizes RIG-I signaling by disrupting critical interactions within the RIG-I translocon complex, thus contributing to evasion of the host antiviral response. IMPORTANCE Host antiviral factors work to sense virus infection through various mechanisms, including a complex signaling pathway known as the retinoic acid-inducible gene I (RIG-I)-like receptor pathway. This pathway drives the production of antiviral molecules known as interferons, which are necessary to establish an antiviral state in the cellular environment. Key to this antiviral signaling pathway is the small chaperone protein 14-3-3ε, which facilitates the delivery of a viral sensor protein, RIG-I, to the mitochondria. In this study, we show that the enteroviral 3C protease cleaves 14-3-3ε during infection, rendering it incapable of facilitating this antiviral response. We also find that the resulting N-terminal cleavage fragment dampens RIG-I signaling and promotes virus infection. Our findings reveal a novel viral strategy that restricts the antiviral host response and provides insights into the mechanisms underlying 14-3-3ε function in RIG-I antiviral signaling.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Animais , Cisteína Endopeptidases/metabolismo , Proteína DEAD-box 58/metabolismo , Imunidade Inata , Mamíferos , Peptídeo Hidrolases/metabolismo , Picornaviridae/metabolismo , Transdução de Sinais , Tretinoína , Proteínas Virais/metabolismo , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Proteases Virais 3C
3.
BMC Med ; 21(1): 193, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226233

RESUMO

BACKGROUND: Immunotherapy has emerged as an efficient therapeutic approach for cancer management. However, stimulation of host immune system against cancer cells often fails to achieve promising clinical outcomes mainly owing to the immunosuppressive characteristics of the tumor microenvironment (TME). Combination therapeutics that can trigger sustained immunogenic cell death (ICD) have provided new opportunities for cancer treatment. METHODS: In this study, we designed and applied an ICD inducer regimen, including a genetically engineered oncolytic virus (miRNA-modified coxsackieviruses B3, miR-CVB3), a pore-forming lytic peptide (melittin, found in bee venom), and a synthetic toll-like receptor 9 ligand (CpG oligodeoxynucleotides), for breast cancer and melanoma treatment. We compared the anti-tumor efficacy of miR-CVB3 and CpG-melittin (CpGMel) alone and in combination (miR-CVB3 + CpGMel) and investigated possible mechanisms involved. RESULTS: We demonstrated that miR-CVB3 + CpGMel had no major impact on viral growth, while enhancing the cellular uptake of CpGMel in vitro. We further showed that combination therapy led to significant increases in tumor cell death and release of damage-associated molecular patterns compared with individual treatment. In vivo studies in 4T1 tumor-bearing Balb/c mice revealed that both primary and distant tumors were significantly suppressed, and the survival rate was significantly prolonged after administration of miR-CVB3 + CpGMel compared with single treatment. This anti-tumor effect was accompanied by increased ICD and immune cell infiltration into the TME. Safety analysis showed no significant pathological abnormalities in Balb/c mice. Furthermore, the developed therapeutic regimen also demonstrated a great anti-tumor activity in B16F10 melanoma tumor-bearing C57BL/6 J mice. CONCLUSIONS: Overall, our findings indicate that although single treatment using miR-CVB3 or CpGMel can efficiently delay tumor growth, combining oncolytic virus-based therapy can generate even stronger anti-tumor immunity, leading to a greater reduction in tumor size.


Assuntos
Melanoma , Vírus Oncolíticos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Meliteno , Vírus Oncolíticos/genética , Imunoterapia , Melanoma/terapia , Microambiente Tumoral
4.
Rev Med Virol ; 32(5): e2343, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35253955

RESUMO

Despite only comprising half of all known viral species, RNA viruses are disproportionately responsible for many of the worst epidemics in human history, including outbreaks of influenza, poliomyelitis, Ebola, and most recently, the coronavirus disease-2019 (COVID-19) pandemic. The propensity for RNA viruses to replicate in cytosolic compartments has led to an evolutionary arms race and the emergence of cytosolic sensors to recognise and initiate the host innate immune response. Although significant progress has been made in identifying and characterising cytosolic RNA sensors as anti-viral innate immune factors, the potential role for cytosolic DNA sensors in RNA viral infection is only recently being appreciated. Among these, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has attracted increasing attention. The cGAS-STING signalling pathway has emerged as a key innate immune signalling axis that is implicated in diverse human diseases from infectious diseases to neurodegeneration and cancer. Here we review the existing literature on RNA viruses and their reciprocal interactions with the cGAS-STING pathway and share insights into RNA virus diversity by touching on the similarities and differences of RNA viral strategies.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Vírus de RNA , DNA , Humanos , Imunidade Inata , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , RNA , Vírus de RNA/genética
5.
J Neuroinflammation ; 19(1): 16, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022041

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system associated with both genetic and environmental risk factors. Infection with enteroviruses, including poliovirus and coxsackievirus, such as coxsackievirus B3 (CVB3), has been proposed as a possible causal/risk factor for ALS due to the evidence that enteroviruses can target motor neurons and establish a persistent infection in the central nervous system (CNS), and recent findings that enteroviral infection-induced molecular and pathological phenotypes closely resemble ALS. However, a causal relationship has not yet been affirmed. METHODS: Wild-type C57BL/6J and G85R mutant superoxide dismutase 1 (SOD1G85R) ALS mice were intracerebroventricularly infected with a sublethal dose of CVB3 or sham-infected. For a subset of mice, ribavirin (a broad-spectrum anti-RNA viral drug) was given subcutaneously during the acute or chronic stage of infection. Following viral infection, general activity and survival were monitored daily for up to week 60. Starting at week 20 post-infection (PI), motor functions were measured weekly. Mouse brains and/or spinal cords were harvested at day 10, week 20 and week 60 PI for histopathological evaluation of neurotoxicity, immunohistochemical staining of viral protein, neuroinflammatory/immune and ALS pathology markers, and NanoString and RT-qPCR analysis of inflammatory gene expression. RESULTS: We found that sublethal infection (mimicking chronic infection) of SOD1G85R ALS mice with CVB3 resulted in early onset and progressive motor dysfunction, and shortened lifespan, while similar viral infection in C57BL/6J, the background strain of SOD1G85R mice, did not significantly affect motor function and mortality as compared to mock infection within the timeframe of the current study (60 weeks PI). Furthermore, we showed that CVB3 infection led to a significant increase in proinflammatory gene expression and immune cell infiltration and induced ALS-related pathologies (i.e., TAR DNA-binding protein 43 (TDP-43) pathology and neuronal damage) in the CNS of both SOD1G85R and C57BL/6J mice. Finally, we discovered that early (day 1) but not late (day 15) administration of ribavirin could rescue ALS-like neuropathology and symptoms induced by CVB3 infection. CONCLUSIONS: Our study identifies a new risk factor that contributes to early onset and accelerated progression of ALS and offers opportunities for the development of novel targeted therapies.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827951

RESUMO

During viral infection, the dynamic virus-host relationship is constantly in play. Many cellular proteins, such as RNA-binding proteins (RBPs), have been shown to mediate antiviral responses during viral infection. Here, we report that the RBP FUS/TLS (fused in sarcoma/translocated in liposarcoma) acts as a host-restricting factor against infection with coxsackievirus B3 (CVB3). Mechanistically, we found that deletion of FUS leads to increased viral RNA transcription and enhanced internal ribosome entry site (IRES)-driven translation, with no apparent impact on viral RNA stability. We further demonstrated that FUS physically interacts with the viral genome, which may contribute to direct inhibition of viral RNA transcription/translation. Moreover, we identified a novel function for FUS in regulating host innate immune response. We show that in the absence of FUS, gene expression of type I interferons and proinflammatory cytokines elicited by viral or bacterial infection is significantly impaired. Emerging evidence suggests a role for stress granules (SGs) in antiviral innate immunity. We further reveal that knockout of FUS abolishes the ability to form SGs upon CVB3 infection or poly(I·C) treatment. Finally, we show that, to avoid FUS-mediated antiviral response and innate immunity, CVB3 infection results in cytoplasmic mislocalization and cleavage of FUS through the enzymatic activity of viral proteases. Together, our findings in this study identify FUS as a novel host antiviral factor which restricts CVB3 replication through direct inhibition of viral RNA transcription and protein translation and through regulation of host antiviral innate immunity.IMPORTANCE Enteroviruses are common human pathogens, including those that cause myocarditis (coxsackievirus B3 [CVB3]), poliomyelitis (poliovirus), and hand, foot, and mouth disease (enterovirus 71). Understanding the virus-host interaction is crucial for developing means of treating and preventing diseases caused by these pathogens. In this study, we explored the interplay between the host RNA-binding protein FUS/TLS and CVB3 and found that FUS/TLS restricts CVB3 replication through direct inhibition of viral RNA transcription/translation and through regulation of cellular antiviral innate immunity. To impede the antiviral role of FUS, CVB3 targets FUS for mislocalization and cleavage. Findings from this study provide novel insights into interactions between CVB3 and FUS, which may lead to novel therapeutic interventions against enterovirus-induced diseases.


Assuntos
Enterovirus Humano B/imunologia , Enterovirus Humano B/fisiologia , Imunidade Inata , Proteína FUS de Ligação a RNA/metabolismo , Proteases Virais 3C/metabolismo , Animais , Antivirais/farmacologia , Autofagia , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Citocinas/biossíntese , Citocinas/genética , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Genoma Viral , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Sítios Internos de Entrada Ribossomal , Camundongos , Neurônios Motores/virologia , Poli I-C/farmacologia , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Proteína FUS de Ligação a RNA/genética , Estresse Fisiológico , Transcrição Gênica , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
7.
Biochem Biophys Res Commun ; 540: 75-82, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450483

RESUMO

The ongoing pandemic of COVID-19 alongside the outbreaks of SARS in 2003 and MERS in 2012 underscore the significance to understand betacoronaviruses as a global health challenge. SARS-CoV-2, the etiological agent for COVID-19, has infected over 50 million individuals' worldwide with more than ∼1 million fatalities. Autophagy modulators have emerged as potential therapeutic candidates against SARS-CoV-2 but recent clinical setbacks urge for better understanding of viral subversion of autophagy. Using MHV-A59 as a model betacoronavirus, time-course infections revealed significant loss in the protein level of ULK1, a canonical autophagy-regulating kinase, and the concomitant appearance of a possible cleavage fragment. To investigate whether virus-encoded proteases target ULK1, we conducted in-vitro and cellular cleavage assays and identified ULK1 as a novel bona fide substrate of SARS-CoV-2 papain-like protease (PLpro). Mutagenesis studies discovered that ULK1 is cleaved at a conserved PLpro recognition sequence (LGGG) after G499, separating its N-terminal kinase domain from a C-terminal substrate recognition region. Over-expression of SARS-CoV-2 PLpro is sufficient to impair starvation-induced autophagy and disrupt formation of ULK1-ATG13 complex. Finally, we demonstrated a dual role for ULK1 in MHV-A59 replication, serving a pro-viral functions during early replication that is inactivated at late stages of infection. In conclusion, our study identified a new mechanism by which PLpro of betacoronaviruses induces viral pathogenesis by targeting cellular autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , SARS-CoV-2/enzimologia , Animais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Células Cultivadas , Camundongos
8.
FASEB J ; 33(1): 942-952, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080445

RESUMO

The role for the NOD-like receptor (NLR) P3 inflammasome in enterovirus infection remains controversial. Available data suggest that the NLRP3 inflammasome is protective against enterovirus A71 but detrimental to the host during coxsackievirus B3 (CVB3) infection. CVB3 is a common etiologic agent associated with myocarditis and pancreatitis. Previous findings on the role of NLRP3 in CVB3 were based primarily on indirect evidence. Here, we utilized NLRP3 knockout mice as well as immune and cardiac cells to investigate the direct interplay between CVB3 infection and NLRP3 activation. We demonstrated that NLRP3 knockout mice exhibited more severe disease phenotype after CVB3 infection (significantly higher virus titers), increased myocardial, and pancreatic damage, as well as markedly impaired cardiac function compared to nontransgenic control mice. We further showed that NLRP3 activity was enhanced during early stage of CVB3 infection, as evidenced by increased gene expression and/or secretion of IL-1ß and caspase-1. Finally, we demonstrated that CVB3 inactivates the NLRP3 inflammasome by degrading NLRP3 and its upstream serine/threonine-protein kinase receptor-interacting protein 1/3 via the proteolytic activity of virus-encoded proteinases. Taken together, our results reveal the functional significance of NLRP3 in host antiviral immunity against CVB3 infection and the mechanisms by which CVB3 has evolved to counteract the host defense response.-Wang, C., Fung, G., Deng, H., Jagdeo, J., Mohamud, Y., Xue, Y. C., Jan, E., Hirota, J. A., Luo, H. NLRP3 deficiency exacerbates enterovirus infection in mice.


Assuntos
Infecções por Enterovirus/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Animais , Caspase 1/metabolismo , Linhagem Celular , Infecções por Enterovirus/genética , Infecções por Enterovirus/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
9.
J Nanobiotechnology ; 18(1): 180, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298099

RESUMO

Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Imunoterapia , Nanomedicina , Adjuvantes Imunológicos , Animais , Materiais Biocompatíveis , Neoplasias da Mama/genética , Vacinas Anticâncer , Células Dendríticas , Técnicas de Inativação de Genes , Humanos , Nanopartículas , Metástase Neoplásica , Microambiente Tumoral
10.
Am J Pathol ; 188(12): 2853-2862, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273599

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons in the cerebral cortex, brainstem, and spinal cord, leading to progressive paralysis and eventual death. Approximately 95% of all ALS cases are sporadic without known causes. Enteroviruses have been suspected to play a role in ALS because of their ability to target motor neurons and to cause muscle weakness and paralysis. In vitro enteroviral infection results in cytoplasmic aggregation and cleavage of transactive response DNA binding protein-43, a pathologic hallmark of ALS. However, whether enteroviral infection can induce ALS-like pathologies in vivo remains to be characterized. In this study, neonatal BALB/C mice were intracranially inoculated with either a recombinant coxsackievirus B3 expressing enhanced green fluorescent protein or mock-infected for 2, 5, 10, 30, and 90 days. Histologic and immunohistochemical analysis of brain tissues demonstrated sustained inflammation (microglia and astrogliosis) and lesions in multiple regions of the brain (hippocampus, cerebral cortex, striatum, olfactory bulb, and putamen) in parallel with virus detection as early as 2 days for up to 90 days after infection. Most notably, ALS-like pathologies, including cytoplasmic mislocalization of transactive response DNA binding protein-43, p62-, and ubiquitin-positive inclusions, were observed in the areas of infection. These data provide the first pathologic evidence to support a possible link between enteroviral infection and ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/imunologia , Infecções por Coxsackievirus/complicações , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Células Cultivadas , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico
11.
Cancer Lett ; 585: 216634, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38309616

RESUMO

Breast cancer continues to pose significant challenges in the field of oncology, necessitating innovative treatment approaches. Among these, oncolytic viruses have emerged as a promising frontier in the battle against various types of cancer, including breast cancer. These viruses, often genetically modified, have the unique ability to selectively infect and destroy cancer cells while leaving healthy cells unharmed. Their efficacy in tumor eradication is not only owing to direct cell lysis but also relies on their capacity to activate the immune system, thereby eliciting a potent and sustained antitumor response. While oncolytic viruses represent a significant advancement in cancer treatment, the complexity and adaptability inherent to cancer require a diverse array of therapies. The concept of combining oncolytic viruses with other treatment modalities, such as chemotherapy, immunotherapy, and targeted therapies, has received significant attention. This synergistic approach capitalizes on the strengths of each therapy, thus creating a comprehensive strategy to tackle the heterogeneous and evolving nature of breast cancer. The purpose of this review is to provide an in-depth discussion of preclinical and clinical viro-based combination therapy in the context of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Vírus Oncolíticos/genética , Neoplasias/patologia , Imunoterapia , Terapia Combinada
12.
Biology (Basel) ; 13(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927311

RESUMO

Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.

13.
ACS Nano ; 18(5): 4241-4255, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278522

RESUMO

Breast cancer's immunosuppressive environment hinders effective immunotherapy, but oncolytic viruses hold promise for addressing this challenge by targeting tumor cells and altering the microenvironment. Yet, neutralizing antibodies and immune clearance impede their clinical utility. This study explored microRNA-modified coxsackievirus B3 (miR-CVB3), an innovative oncolytic virus, and its potential in breast cancer treatment. It investigated miR-CVB3's impact on immune-related proteins and utilized exosomes as both protective shields and delivery carriers. Results demonstrated miR-CVB3's capacity to reshape immune-related protein profiles toward a more immunostimulatory state and enhance exosome-mediated immune cell activation. Notably, cancer cell-released exosomes encapsulating miR-CVB3 (ExomiR-CVB3) maintained its antitumor cytotoxicity and bolstered its immunostimulatory effects. Moreover, ExomiR-CVB3 shielded miR-CVB3 from neutralizing antibodies and rapid immune clearance when it was systemically administered. Building on these findings, ExomiR-CVB3 was engineered with the AS1411 aptamer and doxorubicin (ExomiR-CVB3/DoxApt), enhancing therapeutic efficacy. This notable approach, combining genomic modification, aptamer surface decoration, and doxorubicin addition, demonstrated safe delivery of CVB3 to cancer cells. Comprehensive in vitro and in vivo analyses revealed selective breast cancer cell targeting, cell death induction, and significant immune cell infiltration within the tumor microenvironment while sparing healthy organs. In summary, this study highlights ExomiR-CVB3/DoxApt as a pioneering breast cancer treatment strategy adaptable for diverse cancer types, offering a potent and versatile approach to reshaping cancer immunotherapy.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Humanos , Feminino , Enterovirus Humano B/genética , Neoplasias da Mama/tratamento farmacológico , Imunização , MicroRNAs/genética , Anticorpos Neutralizantes , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Microambiente Tumoral
14.
Antiviral Res ; 222: 105811, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38242503

RESUMO

Coxsackievirus B3 (CVB3) is a non-enveloped, single-stranded, positive RNA virus known for its role in provoking inflammatory diseases that affect the heart, pancreas, and brain, leading to conditions such as myocarditis, pancreatitis, and meningitis. Currently, there are no FDA-approved drugs treating CVB3 infection; therefore, identifying potential molecular targets for antiviral drug development is imperative. In this study, we examined the possibility of activating the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that triggers a type-I interferon (IFN) response, in inhibiting CVB3 infection. We found that activation of the cGAS-STING pathway through the application of cGAS (poly dA:dT and herring testes DNA) or STING agonists (2'3'-cGAMP and diamidobenzimidazole), or the overexpression of STING, significantly suppresses CVB3 replication. Conversely, gene-silencing of STING enhances viral replication. Mechanistically, we demonstrated that cGAS-STING activation combats CVB3 infection by inducing IFN response. Notably, we discovered that knockdown of IFN-α/ß receptor, a key membrane receptor in type-I IFN signaling, or inhibition of the downstream JAK1/2 signaling with ruxolitinib, mitigates the effects of STING activation, resulting in increased viral protein production. Furthermore, we investigated the interplay between CVB3 and the cGAS-STING pathway. We showed that CVB3 does not trigger cGAS-STING activation; instead, it antagonizes STING and the downstream TBK1 activation induced by cGAMP. In summary, our results provide insights into the interaction of an RNA virus and the DNA-sensing pathway, highlighting the potential for agonist activation of the cGAS-STING pathway in the development of anti-CVB3 drugs.


Assuntos
Imunidade Inata , Interferon Tipo I , Transdução de Sinais/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , DNA
15.
Biomed Pharmacother ; 159: 114243, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36641926

RESUMO

Melanoma is a malignant tumor that accounts for the deadliest form of skin cancers. Despite the significant efforts made recently for development of immunotherapeutic strategies including using immune checkpoint inhibitors and cancer vaccines, the clinical outcomes are unsatisfying. Different factors affect efficient cancer immunotherapy such as side-effects, immunosuppressive tumor microenvironment, and tumor heterogeneity. In the past decades, various nanotechnology-based approaches have been developed to enhance the efficacy of cancer immunotherapy, in addition to diminishing the toxicity associated with it. Several studies have shown that proper application of nanomaterials can revolutionize the outcome of immunotherapy in diverse melanoma models. This review summarizes the recent advancement in the integration of nanotechnology and cancer immunotherapy in melanoma treatment. The importance of nanomaterials and their therapeutic advantages for patients with melanoma are also discussed.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Imunoterapia , Neoplasias Cutâneas/terapia , Nanotecnologia , Microambiente Tumoral
16.
Viruses ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851568

RESUMO

The myocardium/heart is the most mitochondria-rich tissue in the human body with mitochondria comprising approximately 30% of total cardiomyocyte volume. As the resident "powerhouse" of cells, mitochondria help to fuel the high energy demands of a continuously beating myocardium. It is no surprise that mitochondrial dysfunction underscores the pathogenesis of many cardiovascular ailments, including those of viral origin such as virus-induced myocarditis. Enteroviruses have been especially linked to injuries of the myocardium and its sequelae dilated cardiomyopathy for which no effective therapies currently exist. Intriguingly, recent mechanistic insights have demonstrated viral infections to directly damage mitochondria, impair the mitochondrial quality control processes of the cell, such as disrupting mitochondrial antiviral innate immune signaling, and promoting mitochondrial-dependent pathological inflammation of the infected myocardium. In this review, we briefly highlight recent insights on the virus-mitochondria crosstalk and discuss the therapeutic implications of targeting mitochondria to preserve heart function and ultimately combat viral myocarditis.


Assuntos
Miocardite , Viroses , Humanos , Miocardite/terapia , Miocárdio , Viroses/terapia , Miócitos Cardíacos , Mitocôndrias
17.
Biomed Pharmacother ; 163: 114789, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119737

RESUMO

There is growing evidence showing that single administration of immunotherapeutic agents has limited efficacy in a number of cancer patients mainly due to tumor heterogeneity and immunosuppressive tumor microenvironment. In this study, a novel nanoparticle-based strategy was applied to achieve efficient tumor-targeted therapy by combining chemotherapeutic agents, i.e., doxorubicin (Dox) and melittin (Mel), with an immune checkpoint inhibitor (PD-L1 DsiRNA). The proposed nanoparticle was prepared by the formation of a complex between Mel and PD-L1 DsiRNA (Dicer-substrate short-interfering RNA), followed by the loading of Dox. The surface of the resultant particles (DoxMel/PD-L1 DsiRNA) was then modified with hyaluronic acid (HA) to increase their stability and distribution. In addition, HA can also act as a tumor-targeting agent through binding to its receptor CD44 on the surface of cancer cells. We demonstrated that the surface engineering of DoxMel/PD-L1 DsiRNA with HA significantly enhances its specificity towards breast cancer cells. Moreover, we observed a noticeable reduction in PD-L1 expression together with a synergistic effect of Dox and Mel on killing cancer cells and inducing immunogenic cell death, leading to significantly diminished tumor growth in 4T1-breast tumor bearing Balb/c mice, improved survival rate and extensive infiltration of immune cells including cytotoxic T cells into the tumor microenvironment. Safety analysis revealed that there is no significant toxicity associated with the developed nanoparticle. All in all, the proposed targeted combination treatment strategy can be considered as a useful method to reduce cancer-associated mortality.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Mol Ther Oncolytics ; 27: 89-99, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36321136

RESUMO

Genetic modification of coxsackievirus B3 (CVB3) by inserting target sequences (TS) of tumor-suppressive and/or organ-selective microRNAs (miRs) into viral genome can efficiently eliminate viral pathogenesis without significant impacts on its oncolytic activity. Nonetheless, reversion mutants (loss of miR-TS inserts) were identified as early as day 35 post-injection in ∼40% immunodeficient mice. To improve the stability, here we re-engineered CVB3 by (1) replacing the same length of viral genome at the non-coding region with TS of cardiac-selective miR-1/miR-133 and pancreas-enriched miR-216/miR-375 or (2) inserting the above miR-TS into the coding region (i.e., P1 region) of viral genome. Serial passaging of these newly established miR-CVB3s in cultured cells for 20 rounds demonstrated significantly improved stability compared with the first-generation miR-CVB3 with 5'UTR insertion of miR-TS. The safety and stability of these new miR-CVB3s was verified in immunocompetent mice. Moreover, we showed that these new viruses retained the ability to suppress lung tumor growth in a xenograft mouse model. Finally, we observed that miR-CVB3 with insertion in P1 region was more stable than miR-CVB3 with preserved length of the 5'UTR, whereas the latter displayed significantly higher oncolytic activity. Overall, we presented here valid strategies to enhance the genomic stability of miR-CVB3 for virotherapy.

19.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146840

RESUMO

Enteroviruses (EVs) are medically important RNA viruses that cause a broad spectrum of human illnesses for which limited therapy exists. Although EVs have been shown to usurp the cellular recycling process of autophagy for pro-viral functions, the precise manner by which this is accomplished remains to be elucidated. In the current manuscript, we sought to address the mechanism by which EVs subvert the autophagy pathway using Coxsackievirus B3 (CVB3) as a model. We showed that CVB3 infection selectively degrades the autophagy cysteine protease ATG4A but not other isoforms. Exogenous expression of an N-terminally Flag-labeled ATG4A demonstrated the emergence of a 43-kDa cleavage fragment following CVB3 infection. Furthermore, bioinformatics analysis coupled with site-directed mutagenesis and in vitro cleavage assays revealed that CVB3 protease 2A cleaves ATG4A before glycine 374. Using a combination of genetic silencing and overexpression studies, we demonstrated a novel pro-viral function for the autophagy protease ATG4A. Additionally, cleavage of ATG4A was associated with a loss of autophagy function of the truncated cleavage fragment. Collectively, our study identified ATG4A as a novel substrate of CVB3 protease, leading to disrupted host cellular function and sheds further light on viral mechanisms of autophagy dysregulation.


Assuntos
Infecções por Coxsackievirus , Cisteína Proteases , Infecções por Enterovirus , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Endopeptidases/metabolismo , Enterovirus Humano B/genética , Infecções por Enterovirus/metabolismo , Glicina/metabolismo , Células HeLa , Humanos , Peptídeo Hidrolases/metabolismo
20.
Cancer Lett ; 548: 215849, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995138

RESUMO

Coxsackievirus B3 (CVB3) displays great oncolytic activity against various cancer cells. Previously, we demonstrated that adding targeting sequences (TS) of miR-145/143, which are downregulated in cancer compared with normal cells, into CVB3 genome drastically attenuates tissue toxicity, while retaining its oncolytic activity towards lung tumor. Here we extended to assess miR-modified CVB3 in breast cancer therapy. We generated a new miRNA-CVB3 by inserting TS of muscle-specific miR-1 and pancreas-selective miR-216 into the above miR-145/143-modified CVB3. We found that this newly established CVB3 (termed miR-CVB3-1.1) is safe without triggering noticeable pathogenesis when applied to immunocompetent mice. In vitro studies revealed that miR-CVB3-1.1 can infect and lyse a wide range of breast cancer cells. Animal experiments using a syngeneic breast cancer mouse model showed that intratumoral inoculation of miR-CVB3-1.1 significantly suppresses tumor growth and metastasis, associated with productive viral growth and enhanced immune cell infiltration in the tumor microenvironment. Moreover, we observed substantially reduced toxicity and prolonged survival in mice treated with miR-CVB3-1.1 compared with wild-type CVB3. Together, our results support miR-CVB3-1.1 as a promising candidate, which can be further evaluated for clinical treatment of breast cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Enterovirus Humano B/genética , Humanos , Camundongos , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA