Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1284-1297, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414245

RESUMO

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade Humoral , Lipossomos , Nanopartículas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA , Animais , Nanopartículas/química , Camundongos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de mRNA/imunologia , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , Lipídeos/química , Lipídeos/imunologia , Feminino , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
J Vis Exp ; (184)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35758664

RESUMO

In recent years, chemically modified messenger RNA (mRNA) has emerged as a potent nucleic acid molecule for developing a wide range of therapeutic applications, including a novel class of vaccines, protein replacement therapies, and immune therapies. Among delivery vectors, lipid nanoparticles are found to be safer and more effective in delivering RNA molecules (e.g., siRNA, miRNA, mRNA) and a few products are already in clinical use. To demonstrate lipid nanoparticle-mediated mRNA delivery, we present an optimized protocol for the synthesis of functional me1Ψ-UTP modified eGFP mRNA, the preparation of cationic liposomes, the electrostatic complex formation of mRNA with cationic liposomes, and the evaluation of transfection efficiencies in mammalian cells. The results demonstrate that these modifications efficiently improved the stability of mRNA when delivered with cationic liposomes and increased the eGFP mRNA translation efficiency and stability in mammalian cells. This protocol can be used to synthesize the desired mRNA and transfect with cationic liposomes for target gene expression in mammalian cells.


Assuntos
Lipossomos , Nanopartículas , Animais , Cátions , Lipossomos/química , Mamíferos/metabolismo , Nanopartículas/química , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção
3.
J Chem Phys ; 133(17): 174903, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21054065

RESUMO

We present a field-theoretic model of the gelation transition in inhomogeneous reversibly bonding systems and demonstrate that our model reproduces the classical Flory-Stockmayer theory of gelation in the homogeneous limit. As an illustration of our model in the context of inhomogeneous gelation, we analyze the mean-field behavior of an equilibrium system of reacting trifunctional units in a good solvent confined within a slit bounded by parallel, repulsive walls. Our results indicate higher conversions and, consequently, higher concentrations of gel following the gelation transition near the center of the slit relative to the edges.


Assuntos
Géis/química , Modelos Químicos , Polímeros/química , Transição de Fase , Solventes/química , Propriedades de Superfície
4.
J Chem Phys ; 133(2): 024902, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20632771

RESUMO

We propose a method for the theoretical investigation of polymer translocation through composite pore structures possessing arbitrarily specified geometries. The proposed method accounts for possible reverse chain motions at the interface between the constituent parts of a composite pore. As an illustration of our method, we study polymer translocation between two spherical compartments connected by a cylindrical pore and by a composite pore consisting of two connected cylinders of different diameters, which is structurally similar to the alpha-hemolysin membrane channel. We demonstrate that reverse chain motions between the pore constituents may contribute significantly to the total translocation time. Our results further establish that translocation through a two-cylinder composite pore is faster when the chain is introduced into the pore on the cis (wide) side of the channel rather than the trans (narrow) side.


Assuntos
Polímeros/química , Modelos Químicos , Movimento (Física) , Porosidade
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 040903, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17994929

RESUMO

The size-based separation of electrophoresing DNA chains of varying lengths has been experimentally achieved in microfluidic obstacle arrays. The separation is actuated by the occurrence of size-dependent chain-obstacle collisions and the subsequent formation of hooked chain configurations in the array. We investigate the role played by disorder in array geometry in determining chain dynamics in the array. As a prototypical example of a disordered post array, we select a self-assembled array of magnetic colloids, wherein the degree of disorder may be varied by varying the magnetic field strength under which the array is generated. We employ Brownian dynamics simulations of chain electrophoresis in the array to compute the mobility, dispersivity, chain-obstacle collision probability, and mean chain stretch in the device, and demonstrate the link between the orientational order of the array and the resulting chain dynamics.


Assuntos
Biofísica/métodos , DNA/química , Eletroforese/métodos , Coloides , Misturas Complexas , Difusão , Técnicas Analíticas Microfluídicas , Microfluídica , Modelos Estatísticos , Conformação Molecular , Probabilidade , Reprodutibilidade dos Testes
6.
J Chem Phys ; 128(12): 125104, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18376979

RESUMO

We investigate the voltage-driven translocation of an inhomogeneously charged polymer through a nanopore by utilizing discrete and continuous stochastic models. As a simplified illustration of the effect of charge distribution on translocation, we consider the translocation of a polymer with a single charged site in the presence and absence of interactions between the charge and the pore. We find that the position of the charge that minimizes the translocation time in the absence of pore-polymer interactions is determined by the entropic cost of translocation, with the optimum charge position being at the midpoint of the chain for a rodlike polymer and close to the leading chain end for an ideal chain. The presence of attractive and repulsive pore-charge interactions yields a shift in the optimum charge position toward the trailing end and the leading end of the chain, respectively. Moreover, our results show that strong attractive or repulsive interactions between the charge and the pore lengthen the translocation time relative to translocation through an inert pore. We generalize our results to accommodate the presence of multiple charged sites on the polymer. Our results provide insight into the effect of charge inhomogeneity on protein translocation through biological membranes.


Assuntos
Modelos Químicos , Nanoestruturas/química , Polímeros/química , Membranas Artificiais , Porosidade , Proteínas/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA