Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(11): 192, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34637049

RESUMO

In India, the tribal population constitutes almost 8.6% of the nation's total population. Despite their large presence, there are only a few reports available on Mycobacterium tuberculosis (M. tb) strain prevalence in Indian tribal communities considering the mobile nature of this population and also the influence of the mainstream populations they coexist within many areas for their livelihood. This study attempts to provide critical information pertaining to the TB strain diversity, its public health implications, and distribution among the tribal population in eleven Indian states and Andaman & Nicobar (A&N) Island. The study employed a population-based molecular approach. Clinical isolates were received from 66 villages (10 states and Island) and these villages were selected by implying situation analysis. A total of 78 M. tb clinical isolates were received from 10 different states and A&N Island. Among these, 16 different strains were observed by spoligotyping technique. The major M. tb strains spoligotype belong to the Beijing, CAS1_DELHI, and EAI5 family of M. tb strains followed by EAI1_SOM, EAI6_BGD1, LAM3, LAM6, LAM9, T1, T2, U strains. Drug-susceptibility testing (DST) results showed almost 15.4% of clinical isolates found to be resistant to isoniazid (INH) or rifampicin (RMP) + INH. Predominant multidrug-resistant (MDR-TB) isolates seem to be Beijing strain. Beijing, CAS1_DELHI, EAI3_IND, and EAI5 were the principal strains infecting mixed tribal populations across India. Despite the small sample size, this study has demonstrated higher diversity among the TB strains with significant MDR-TB findings. Prevalence of Beijing MDR-TB strains in Central, Southern, Eastern India and A&N Island indicates the transmission of the TB strains.


Assuntos
Etnicidade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Feminino , Genes Bacterianos , Humanos , Índia/epidemiologia , Ilhas , Masculino , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Prevalência , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
2.
Microb Pathog ; 130: 104-111, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849491

RESUMO

Emergence of multi-drug resistant bacterial pathogens is escalating and it is essential to develop novel strategies to combat these super bugs. LasR is a regulator switch that plays a vital role in quorum sensing (QS) and pathogenesis of Pseudomonas aeruginosa. The present study reports two novel Mannich base (1-(phenyl (o-tolylamino) methyl) urea and 3-((1H-Imidazole-1-yl) methylnaphthalene-2-ol with enhanced anti-QS and antibiofilm activities. Synthetic compound revealed prolific interaction patterns with LasR quorum sensing receptor and showed to exhibit LasR antagonistic activities in P. aeruginosa. In-vitro LasR-inhibitory activities were further confirmed by biofilm and pyocyanin inhibition assays which showed a dose-dependent activity. The Mannich base also repressed the mRNA transcripts levels of lasA and lasB genes, confirming its active role in LasR inhibitory activity. Importantly, C1 and C2 played a crucial role in antagonizing LasR receptor by forming H-bonds with Tyr47 in the LasR active site and the presence of urea moiety on one of the Mannich base was a discrete advantage. Taken together, the insilico and invitro assays revealed similar evidences, thus confirming the mode of action of the Mannich bases. Overall the findings will assist in drug designing and for developing newer drugs with Mannich bases and its derivatives for treatment of P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Bases de Mannich/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Transativadores/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Perfilação da Expressão Gênica , Bases de Mannich/química , Simulação de Acoplamento Molecular , Ligação Proteica , Pseudomonas aeruginosa/fisiologia , Piocianina/antagonistas & inibidores , Transativadores/química
3.
Chem Biol Drug Des ; 101(4): 883-895, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36533863

RESUMO

The alarming increase in multidrug resistance, which includes Bedaquiline and Delamanid, stumbles success in Tuberculosis treatment outcome. Mycobacterium tuberculosis gains resistance to rifampicin, which is one of the less toxic and potent anti-TB drugs, through genetic mutations predominantly besides efflux pump mediated drug resistance. In recent decades, scientific interventions are being carried out to overcome this hurdle using novel approaches to save this drug by combining it with other drugs/molecules or by use of high dose rifampicin. This study reports five small molecules namely Ellagic acid, Methyl Stearate, Myoinositol, Rutin, and Shikimic acid that exhibit synergistic inhibitory activity with rifampicin against resistant TB isolates. In-silico examinations revealed possible blocking of Rv1819c-an ABC transporter efflux pump that was known to confer resistance in M. tuberculosis to rifampicin. The synergistic anti-TB activity was assessed using a drug combination checkerboard assay. Efflux pump inhibition activity of ellagic acid, myoinositol, and methyl stearate was observed through ethidium bromide accumulation assay in the drug-resistant M. tuberculosis clinical strains and recombinant Mycobacterium smegmatis expressing Rv1819c in coherence with the significant reduction in the minimum inhibitory concentration of rifampicin. Cytotoxicity of the active efflux inhibitors was tested using in silico and ex vivo methods. Myoinositol and methyl stearate were completely non-toxic to the hematological and epithelial cells of different organs under ex vivo conditions. Based on these findings, these molecules can be considered for adjunct TB therapy; however, their impact on other drugs of anti-TB regimen needs to be tested.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Rifampina/farmacologia , Estearatos/uso terapêutico , Inositol , Ácido Elágico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana
4.
Front Microbiol ; 11: 1182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695072

RESUMO

The World Health Organization (WHO) has developed specific guidelines for critical concentrations (CCs) of antibiotics used for tuberculosis (TB) treatment, which is universally followed for drug susceptibility testing (DST) of clinical specimens. However, the CC of drugs can differ significantly among the mycobacterial species based on the population, geographic location, and the prevalence of the infecting strain in a particular area. The association between CC and the minimal inhibitory concentration (MIC) of anti-TB drugs is poorly understood. In this study, we assessed the MICs of anti-TB drugs, including isoniazid (INH), rifampicin (RMP), moxifloxacin (MXF), ethambutol (ETH), and p-aminosalicylic acid (PAS) on drug-sensitive Mtb isolates from pulmonary TB patients in South India. The MIC assays performed using solid- and liquid-growth media showed changes in the CC of a few of the tested antibiotics compared with the WHO-recommended levels. Our observation suggests that the WHO guidelines could potentially lead to overdiagnosis of drug-resistant cases, which can result in inappropriate therapeutic decisions. To evaluate the correlation between drug-resistance and CC, we performed the whole-genome sequencing for 16 mycobacterial isolates, including two wild-type and 14 resistant isolates. Our results showed that two of the isolates belonged to the W-Beijing lineage, while the rest were of the East-African-Indian type. We identified a total of 74 mutations, including five novel mutations, which are known to be associated with resistance to anti-TB drugs in these isolates. In our previous study, we determined the serum levels of INH and RMP among the same patients recruited in the current study and estimated the MICs of the corresponding infected isolates in these cases. Using these data and the CCs for INH and RMP from the present study, we performed pharmacodynamics (PD) evaluation. The results show that the PD of RMP was subtherapeutic. Together, these observations emphasize the need for optimizing the drug dosage based on the PD of large-scale studies conducted in different geographical settings.

5.
Sci Rep ; 8(1): 14972, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297833

RESUMO

Mannich bases and its derivatives are regarded as supreme pharmacophores in therapeutics. The study investigates the antimycotic potential of Mannich bases, 1-((1H-benzimidazol-1-yl) methyl) urea (C1) and 1-((3-hydroxynapthalen-2-yl) methyl) thiourea (C2), against Candida albicans. Biofilm and hyphal inhibitory activities of the Mannich bases were tested by crystal violet quantification, fluorescence imaging cAMP rescue, qRT PCR, and by molecular docking analysis. The compounds inhibited the biofilms of C. albicans and restrained the filamentation abilities of the pathogen. Structure-activity relationship studies revealed that the presence of urea or thiourea moiety in the tail section is essential for interacting with adenylate cyclase (AC). The Mannich bases seemed to block Ras-cAMP-PKA pathway by inhibiting second messenger activity required for hyphal induction and biofilm formation. In conclusion, the study warrants point-of-care testing of C1/C2 and provides a starting point for deriving several structurally modified Mannich bases which might plausibly replace the prevailing antimycotic drugs in future.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Bases de Mannich/química , Bases de Mannich/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candidíase/tratamento farmacológico , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA