Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genetica ; 146(1): 13-27, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28921302

RESUMO

The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.


Assuntos
Aminoácidos/genética , Códon , Corynebacterium/genética , Evolução Molecular , Genoma Bacteriano , Corynebacterium/classificação , Genes Bacterianos , Variação Genética , Genômica , Filogenia , Transcrição Gênica
2.
Curr Res Microb Sci ; 6: 100225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380107

RESUMO

Agricultural crop residues include leftover and unmarketable materials, such as crop stover, weeds, leaf litter, sawdust, forest litter, and livestock manure originating from crop cultivation, and post-harvest activities. Such residues are a storehouse of plant nutrients and several other resources and therefore need to be managed in an environment- friendly manner with minimum loss of plant nutrients and other resources that can be recovered. Microbial starter consortia are a key component in the rapid recycling of farm residue wastes and the production of other valuable products, such as biogas, bioethanol/biofuel, enzymes, molecules, and metabolites. Recent advances in microbial biotechnology can also facilitate the conversion of farm residues into economically valuable materials, i.e. soil additives, adsorbents, energy, and enzymes, thereby contributing to a circular economy. This special issue attempts to compile the latest advancements in the field of agricultural crop residue management for enhanced nutrient recycling and resource recovery by the use of compost starters and inoculant formulations.

3.
Curr Res Microb Sci ; 7: 100251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165409

RESUMO

The adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices. Additionally, this review discusses the future prospects of biofertilizers, emphasizing the ongoing advancements in biotechnology and formulation techniques that are expected to enhance their efficacy and applicability. Furthermore, this article provides insights into strategies for the successful acceptance of biofertilizers among farmers, including the importance of quality control, assurance, and education initiatives to raise awareness about their benefits and overcome barriers to adoption. By synthesizing the current research findings and industrial developments, this review offers valuable guidance for stakeholders seeking to exploit the potential of biofertilizers or beneficial microbes to promote soil health, ensure sustainable crop production, and addressing the challenges of modern agriculture.

4.
J Biomol Struct Dyn ; 40(20): 10239-10249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34182880

RESUMO

In December 2019, COVID-19 epidemic was reported in Wuhan, China, and subsequently the infection has spread all over the world and became pandemic. The death toll associated with the pandemic is increasing day by day in a high rate. Herein, an effort has been made to identify the potentiality of commercially available drugs and also their probable derivatives for creation of better opportunity to make more powerful drugs against coronavirus. This study involves the in-silico interactions of dexamethasone and its derivatives against the multiple proteins of SARS-CoV-2 with the help of various computational methods. Descriptor parameters revealed their non-toxic effect in the human body. Ultimately docking studies and molecular dynamic simulation on those target protein by dexamethasone and its derivatives showed a high binding energy. Dexamethasone showed -9.8 kcal/mol and its derivative D5 showed -12.1 kcal/mol binding energy. Those scores indicate that dexamethasone has more therapeutic effect on SARS CoV-2 than other currently used drugs. Derivatives give the clue for the synthesis of a novel drug to remove SARS CoV-2. Until then, dexamethasone will be used as a potential inhibitor of SARS CoV-2.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Simulação de Dinâmica Molecular , Dexametasona/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases
5.
J Biomol Struct Dyn ; 40(12): 5665-5686, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33459176

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) is ß-coronavirus that is responsible for the pandemic coronavirus disease 2019 (COVID-19) all over the world. The rapid spread of the novel SARS CoV-2 worldwide is raising a significant global public health issue with nearly 61.86 million people infected and 1.4 million deaths. To date, no specific drugs are available for the treatment of COVID-19. The inhibition of proteases essential for the proteolytic treatment of viral polyproteins is a conventional therapeutic strategy for conquering viral infections. In the study, molecular docking approach was used to screen potential drug compounds among the phytochemicals of Vitex negundo L. against COVID-19 infection. Molecular docking analysis showed that oleanolic acid forms a stable complex and other phyto-compounds ursolic acid, 3ß-acetoxyolean-12-en-27-oic acid and isovitexin of V. negundo natural compounds form a less-stable complex. When compared with the control the synergistic interaction of these compounds shows inhibitory activity against papain-like protease (PLpro) of SARS CoV-2 (COVID-19). The molecular dynamics (MD) simulation (50 ns) were performed on the complexes of PLpro and the phyto-compounds viz. oleanolic acid, ursolic acid, 3ß-acetoxyolean-12-en-27-oic acid and isovitexin followed by the binding free energy calculations using MM-GBSA and these molecules have stable interactions with PLpro protein binding site. The MD simulation study provides more insight into the functional properties of the protein-ligand complex and suggests that these molecules can be considered as a potential drug molecule against COVID-19. In this pandemic situation, these herbal compounds provide a rich resource to produce new antivirals against COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Ácido Oleanólico , Vitex , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Oleanólico/farmacologia , Pandemias , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Vitex/metabolismo
6.
Curr Res Microb Sci ; 2: 100026, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841317

RESUMO

Arbuscular mycorrhizal fungi (AMF) and plant symbiosis is the old, fascinating and beneficial relation that exist on earth for the plants. In this review, we have elaborated that the strigolactones (SLs) are released from the roots and function with root parasite, seeds and symbiotic AMF as contact chemicals. They are transported through the xylem in the plants and can regulate plant architecture, seed germination, nodule formation, increase the primary root length, influence the root hairs and physiological reactions to non-living agents by regulating their metabolism. SLs first evolved in ancient plant lineages as regulators of the basic production processes and then took a new role to maintain the growing biological complexities of terrestrial plant. SLs belongs to a diversified category of butenolide-bearing plant hormones related to various processes of agricultural concern. SLs also arouses the development of spores, the divergence and enlargement of hyphae of AMF, metabolism of mitochondria, reprogramming of transcription process, and generation of chitin oligosaccharides which further stimulate the early response of symbiosis in the host plant, results from better communication in plant and ability of coexistence with these fungi. The required nutrients are transferred from the roots to the shoots, which affect the physiological, biochemical, and morphological characteristics of the plant. On the other hand, the plant provides organic carbon in the form of sugars and lipids to the fungi, which they use as a source of energy and for carried out different anabolic pathways. SLs also lead to alteration in the dynamic and structure of actin in the root region as well as changes the auxin's transporter localization in the plasma membrane. Thus, this study reveals the functions that SLs play in the growth of roots, as well as their effect and interaction with AMF that promote plant growth.

7.
Appl Biochem Biotechnol ; 175(7): 3371-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25649444

RESUMO

This study aimed to explore the bactericidal activity of a feather-degraded active peptide against multiple-antibiotic-resistant (MAR) Staphylococcus aureus. An antibacterial peptide (ABP) was isolated from the chicken feathers containing fermented media of Paenibacillus woosongensis TKB2, a keratinolytic soil isolate. It was purified by HPLC, and its mass was found to be 4666.87 Da using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) spectroscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of this peptide were 22.5 and 90 µg/ml, respectively. SEM study revealed the distorted cell wall of the test strain along with pore formation. The possible reason for bactericidal activity of the peptide is due to generation of reactive oxygen species (ROS), resulting in membrane damage and leakage of intracellular protein. Complete sequence of the peptide was predicted and retrieved from the sequence database of chicken feather keratin after in silico trypsin digestion using ExPASy tools. Further, net charge, hydrophobicity (77.7 %) and molecular modelling of the peptide were evaluated for better understanding of its mode of action. The hydrophobic region (17 to 27) of the peptide may facilitate for initial attachment on the bacterial membrane. The ABP exhibited no adverse effects on RBC membrane and HT-29 human cell line. This cytosafe peptide can be exploited as an effective therapeutic agent to combat Staphylococcal infections.


Assuntos
Farmacorresistência Bacteriana/imunologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos/administração & dosagem , Infecções Estafilocócicas/imunologia , Animais , Galinhas/imunologia , Cromatografia Líquida de Alta Pressão , Plumas/química , Plumas/imunologia , Humanos , Staphylococcus aureus Resistente à Meticilina/imunologia , Testes de Sensibilidade Microbiana , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Infecções Estafilocócicas/prevenção & controle
8.
Appl Biochem Biotechnol ; 167(5): 1040-51, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22246728

RESUMO

A new feather-degrading bacterium PKD 5 was isolated from feather dumping soil and identified as Bacillus weihenstephanensis based on morphological and physiochemical characteristics as well as 16S rRNA gene analysis. Extracellular keratinase was produced during submerged aerobic cultivation in a medium containing chicken feather as sole carbon and energy source and supplemented with salt solutions (NaCl 5.0, MgSO4 1.0, K2HPO4 1.0, (NH4)2SO4, 2.0 g/l). The optimal conditions for keratinase production include initial pH of 7.0, inoculum size of 2% (v/v), and cultivation at 40 °C. The maximum keratinase production and keratinolytic activity of PKD 5 was achieved after 7 days of fermentation under shaking condition (120 rpm). The enzyme has found application in developing cost-effective feather by-products for feeds and fertilizers. The manuscript first time describes B. weihenstephanensis PKD 5-mediated keratinase production under submerged fermentation and whole chicken feather biodegradation.


Assuntos
Bacillus/isolamento & purificação , Bacillus/metabolismo , Galinhas , Plumas/química , Fermentação , Queratinas/metabolismo , Peptídeo Hidrolases/biossíntese , Animais , Bacillus/efeitos dos fármacos , Bacillus/enzimologia , Carbono/metabolismo , Relação Dose-Resposta a Droga , Fermentação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Imersão , Cinética , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo , Cloreto de Sódio/farmacologia , Temperatura
9.
J Microbiol Immunol Infect ; 42(2): 172-5, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19597651

RESUMO

BACKGROUND AND PURPOSE: Microbial tannase (tannin acyl hydrolase, EC 3.1.1.20), a hydrolysable tannin-degrading enzyme, has gained importance in various industrial processes, and is used extensively in the manufacture of instant tea, beer, wine, and gallic acid. Tannase is an inducible enzyme, and hydrolysable tannin, especially tannic acid, is the sole inducer. This study is of the effect of various amino acids and their analogues on tannase biosynthesis by Bacillus licheniformis KBR6 to ascertain the mode of action of these growth factors on tannase biosynthesis from microbial origin. METHODS: Enzyme production was carried out in enriched tannic acid medium through submerged fermentation for 20 h at 35 degrees C. Different amino acids at a concentration of 0.05 g% (w/v) were added to the culture medium immediately after sterilization. Culture supernatant was used as the source of the enzyme and the quantity of tannase was estimated by the colorimetric assay method. Growth of the organism was estimated according to biomass dry weight. RESULTS: Maximum tannase (2.87-fold that of the control) was synthesized by B. licheniformis KBR6 when alanine was added to the culture medium. Other amino acids, such as DL-serine, L-cystine, glycine, L-ornithine, aspartic acid, L-glutamic acid, DL-valine, L-leucine and L-lysine, also induced tannase synthesis. L-Cysteine monohydrochloride and DL-threonine were the most potent inhibitors. CONCLUSIONS: Regulation of tannase biosynthesis by B. licheniformis in the presence of various amino acids is shown. This information will be helpful for formulating an enriched culture medium for industrial-scale tannase production.


Assuntos
Aminoácidos/metabolismo , Bacillus/enzimologia , Bacillus/metabolismo , Hidrolases de Éster Carboxílico/biossíntese , Bacillus/crescimento & desenvolvimento , Colorimetria/métodos , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Temperatura
10.
J Ind Microbiol Biotechnol ; 35(4): 245-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18180968

RESUMO

In the present study, the optimum conditions for the production of xylanase by immobilized spores of Trichoderma reesei SAF3 in calcium alginate beads were determined. The operational stability of the beads during xylanase production under semi-continuous fermentation was also studied. The influence of alginate concentration (1, 2, 3, and 4%) and initial cell loading (100, 200, 300, 400, and 500 beads per flask) on xylanase production was considered. The production of xylanase was found to increase significantly with increasing concentration of alginate and reached a maximum yield of 3.12+/-0.18 U ml(-1) at 2% (w/v). The immobilized cells produced xylanase consistently up to 10 cycles and reached a maximum level at the forth cycle (3.36+/-0.2 U ml(-1)).


Assuntos
Alginatos/química , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Microbiologia Industrial , Trichoderma/enzimologia , Reatores Biológicos , Células Imobilizadas/enzimologia , Fermentação , Proteínas Fúngicas/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Índia , Microesferas , Esporos Fúngicos/enzimologia , Especificidade por Substrato , Trichoderma/isolamento & purificação
11.
Braz. j. microbiol ; 37(4): 462-464, Oct.-Dec. 2006. graf, ilus
Artigo em Inglês | LILACS | ID: lil-442195

RESUMO

A xylanase producing fungi has been isolated from soil and identified as Trichoderma reesei SAF3. Maximum growth of the organism was found at 48 h under submerged condition in xylan containing enriched medium, whereas highest enzyme production (4.75U/mL) was recorded at 72 h. No detectable cellulase activity was noted during whole cultivation period. The partially purified enzyme hydrolyzed xylan into xylopentose and xylose. All these properties of xylanase highlighten its promising uses in industrial scale.


A partir de solo, isolou-se uma cepa de fungos produtos de xilanase, posteriormente identificado como Trichoderma reesei SAF3. O crescimento máximo do fungo foi obtido após 48h em condições submersas em meio de cultura contendo xilano, enquanto produção máxima de enzima (4,75U/mL) ocorreu em 72h. Durante o período de cultivo, não foi detectada atividade celulásica. A enzima parcialmente purificada hidrolizou xilano a xilopentose e xilose. Essas propriedades da xilanase destacam seu uso promissor em escala industrial.


Assuntos
Fungos , Técnicas In Vitro , Trichoderma , Xilanos , Meios de Cultura , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA