Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS Lett ; 596(9): 1111-1123, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156710

RESUMO

Nutrient import by APC-type transporters is predicted to have a high energy demand because it depends on the plasma membrane proton gradient established by the ATP-driven proton pump Pma1. We show that Pma1 is indeed a major energy consumer and its activity is tightly linked to the cellular ATP levels. The low Pma1 activity caused by acute loss of respiration resulted in a dramatic drop in cytoplasmic pH, which triggered the downregulation of the major proton importers, the APC transporters. This regulatory system is likely the reason for the observed rapid endocytosis of APC transporters during many environmental stresses. Furthermore, we show the importance of respiration in providing ATP to maintain a strong proton gradient for efficient nutrient uptake.


Assuntos
Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Endocitose , Metabolismo Energético , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes , Prótons , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Biol Cell ; 31(4): 287-303, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851579

RESUMO

Eisosomes are membrane furrows at the cell surface of yeast that have been shown to function in two seemingly distinct pathways, membrane stress response and regulation of nutrient transporters. We found that many stress conditions affect both of these pathways by changing plasma membrane tension and thus the morphology and composition of eisosomes. For example, alkaline stress causes swelling of the cell and an endocytic response, which together increase membrane tension, thereby flattening the eisosomes. The flattened eisosomes affect membrane stress pathways and release nutrient transporters, which aids in their down-regulation. In contrast, glucose starvation or hyperosmotic shock causes cell shrinking, which results in membrane slack and the deepening of eisosomes. Deepened eisosomes are able to trap nutrient transporters and protect them from rapid endocytosis. Therefore, eisosomes seem to coordinate the regulation of both membrane tension and nutrient transporter stability.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Nucleotídeos/genética , Fosfoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Pressão Osmótica , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sorbitol/farmacologia , Tensão Superficial
3.
Mol Biol Cell ; 29(17): 2113-2127, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29927345

RESUMO

Eisosomes are lipid domains of the yeast plasma membrane that share similarities to caveolae of higher eukaryotes. Eisosomes harbor APC-type nutrient transporters for reasons that are poorly understood. Our analyses support the model that eisosomes function as storage compartments, keeping APC transporters in a stable, inactive state. By regulating eisosomes, yeast is able to balance the number of proton-driven APC transporters with the proton-pumping activity of Pma1, thereby maintaining the plasma membrane proton gradient. Environmental or metabolic changes that disrupt the proton gradient cause the rapid restructuring of eisosomes and results in the removal of the APC transporters from the cell surface. Furthermore, we show evidence that eisosomes require the presence of APC transporters, suggesting that regulating activity of nutrient transporters is a major function of eisosomes.


Assuntos
Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Álcalis/farmacologia , Regulação para Baixo , Modelos Biológicos , Estabilidade Proteica , Transporte Proteico , Prótons , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Especificidade por Substrato
4.
PLoS One ; 8(9): e74299, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058541

RESUMO

CLN5 is a soluble lysosomal protein with unknown function. Mutations in CLN5 lead to neuronal ceroid lipofuscinosis, a group of inherited neurodegenerative disorders that mainly affect children. CLN5 has eight potential N-glycosylation sites based on the Asn-X-Thr/Ser consensus sequence. Through site-directed mutagenesis of individual asparagine residues to glutamine on each of the N-glycosylation consensus sites, we showed that all eight putative N-glycosylation sites are utilized in vivo. Additionally, localization studies showed that the lack of N-glycosylation on certain sites (N179, N252, N304, or N320) caused CLN5 retention in the endoplasmic reticulum, indicating that glycosylation is important for protein folding. Interestingly, one particular mutant, N401Q, is mislocalized to the Golgi, suggesting that N401 is not important for protein folding but essential for CLN5 trafficking to the lysosome. Finally, we analyzed several patient mutations in which N-glycosylation is affected. The N192S patient mutant is localized to the lysosome, indicating that this mutant has a functional defect in the lysosome. Our results suggest that there are functional differences in various N-glycosylation sites of CLN5 which affect folding, trafficking, and lysosomal function of CLN5.


Assuntos
Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Endossomos , Glicosilação , Células HeLa , Humanos , Proteínas de Membrana Lisossomal , Proteínas de Membrana/química , Proteínas Mutantes/metabolismo , Mutação/genética , Estabilidade Proteica , Transporte Proteico , Frações Subcelulares/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA