Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(24)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38484390

RESUMO

Nanostructured metal oxide semiconductors have emerged as promising nanoscale photocatalysts due to their excellent photosensitivity, chemical stability, non-toxicity, and biocompatibility. Enhancing the photocatalytic activity of metal oxide is critical in improving their efficiency in radical ion production upon optical exposure for various applications. Therefore, this review paper provides an in-depth analysis of the photocatalytic activity of nanostructured metal oxides, including the photocatalytic mechanism, factors affecting the photocatalytic efficiency, and approaches taken to boost the photocatalytic performance through structure or material modifications. This paper also highlights an overview of the recent applications and discusses the recent advancement of ZnO-based nanocomposite as a promising photocatalytic material for environmental remediation, energy conversion, and biomedical applications.

2.
Nanomaterials (Basel) ; 14(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607152

RESUMO

This study describes a method by which to synthesize SiO2-based graphene nanoballs (SGB) using atmospheric pressure chemical vapor deposition (APCVD) with copper vapor assistance. This method should solve the contamination, damage, and high costs associated with silica-based indirect graphene synthesis. The SGB was synthesized using APCVD, which was optimized using the Taguchi method. Multiple synthesis factors were optimized and investigated to find the ideal synthesis condition to grow SGB for thermoelectric (TE) applications. Raman spectra and FESEM-EDX reveal that the graphene formed on the silicon nanoparticles (SNP) is free from copper. The prepared SGB has excellent electrical conductivity (75.0 S/cm), which shows better results than the previous report. Furthermore, the SGB nanofillers in bismuth telluride (Bi2Te3) nanocomposites as TE materials exhibit a significant increment in Seebeck coefficients (S) compared to the pure Bi2Te3 sample from 109 to 170 µV/K at 400 K, as well as electrical resistivity decrement. This approach would offer a simple strategy to improve the TE performance of commercially available TE materials, which is critical for large-scale industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA