Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1306591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304738

RESUMO

Rye (Secale cereale L.) is an important cereal crop used for food, beverages, and feed, especially in North-Eastern Europe. While rye is generally more tolerant to biotic and abiotic stresses than other cereals, it still can be infected by several diseases, including scald caused by Rhynchosporium secalis. The aims of this study were to investigate the genetic architecture of scald resistance, to identify genetic markers associated with scald resistance, which could be used in breeding of hybrid rye and to develop a model for genomic prediction for scald resistance. Four datasets with records of scald resistance on a population of 251 hybrid winter rye lines grown in 2 years and at 3 locations were used for this study. Four genomic models were used to obtain variance components and heritabilities of scald resistance. All genomic models included additive genetic effects of the parental components of the hybrids and three of the models included additive-by-additive epistasis and/or dominance effects. All models showed moderate to high broad sense heritabilities in the range of 0.31 (SE 0.05) to 0.76 (0.02). The model without non-additive genetic effects and the model with dominance effects had moderate narrow sense heritabilities ranging from 0.24 (0.06) to 0.55 (0.08). None of the models detected significant non-additive genomic variances, likely due to a limited data size. A genome wide association study was conducted to identify markers associated with scald resistance in hybrid winter rye. In three datasets, the study identified a total of twelve markers as being significantly associated with scald resistance. Only one marker was associated with a major quantitative trait locus (QTL) influencing scald resistance. This marker explained 11-12% of the phenotypic variance in two locations. Evidence of genotype-by-environment interactions was found for scald resistance between one location and the other two locations, which suggested that scald resistance was influenced by different QTLs in different environments. Based on the results of the genomic prediction models and GWAS, scald resistance seems to be a quantitative trait controlled by many minor QTL and one major QTL, and to be influenced by genotype-by-environment interactions.

2.
Front Plant Sci ; 14: 1193433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162304

RESUMO

Genomic models for prediction of additive and non-additive effects within and across different heterotic groups are lacking for breeding of hybrid crops. In this study, genomic prediction models accounting for incomplete inbreeding in parental lines from two different heterotic groups were developed and evaluated. The models can be used for prediction of general combining ability (GCA) of parental lines from each heterotic group as well as specific combining ability (SCA) of all realized and potential crosses. Here, GCA was estimated as the sum of additive genetic effects and within-group epistasis due to high degree of inbreeding in parental lines. SCA was estimated as the sum of across-group epistasis and dominance effects. Three models were compared. In model 1, it was assumed that each hybrid was produced from two completely inbred parental lines. Model 1 was extended to include three-way hybrids from parental lines with arbitrary levels of inbreeding: In model 2, parents of the three-way hybrids could have any levels of inbreeding, while the grandparents of the maternal parent were assumed completely inbred. In model 3, all parental components could have any levels of inbreeding. Data from commercial breeding programs for hybrid rye and sugar beet was used to evaluate the models. The traits grain yield and root yield were analyzed for rye and sugar beet, respectively. Additive genetic variances were larger than epistatic and dominance variances. The models' predictive abilities for total genetic value, for GCA of each parental line and for SCA were evaluated based on different cross-validation strategies. Predictive abilities were highest for total genetic values and lowest for SCA. Predictive abilities for SCA and for GCA of maternal lines were higher for model 2 and model 3 than for model 1. The implementation of the genomic prediction models in hybrid breeding programs can potentially lead to increased genetic gain in two different ways: I) by facilitating the selection of crossing parents with high GCA within heterotic groups and II) by prediction of SCA of all realized and potential combinations of parental lines to produce hybrids with high total genetic values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA